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Zusammenfassung

In dieser Dissertation werden regularisierte Thetalifts zwischen verschiedenen Räumen
harmonischer Maaßformen und ihre Anwendungen untersucht. Die Arbeit besteht aus
drei Hauptteilen.

Im ersten Teil untersuchen wir den sogenannten Millson Thetalift, der harmonische
Maaßformen vom Gewicht −2k (mit k ∈ Z≥0) zu Kongruenzuntergruppen von SL2(Z)
auf vektorwertige harmonische Maaßformen vom Gewicht 1/2− k abbildet. Wir zeigen,
dass die Fourierkoeffizienten des Lifts einer harmonischen Maaßform F gegeben sind
durch Spuren von CM-Werten und Zykelintegralen von nicht-holomorphen Modulfor-
men, die aus F durch Anwendung gewisser Differentialoperatoren hervorgehen, und
dass der Millson Thetalift mit dem klassischen Shintani Thetalift durch den ξ-Operator
in Beziehung steht. Dieser Teil basiert auf einer gemeinsamen Arbeit mit Claudia Alfes-
Neumann [ANS16].

Der zweite Teil behandelt neue Anwendungen des Millson und des Kudla-Millson
Thetalifts. Wir konstruieren zunächst Vervollständigungen von zwei von Ramanujans
Mock Thetafunktionen als Millson Thetalift einer geeigneten schwach holomorphen mod-
ularen Funktion F und benutzen dies, um Formeln für die Koeffizienten der Mock Theta-
funktionen in Termen von Spuren von CM-Werten von F herzuleiten. Außerdem erhal-
ten wir durch den Millson und den Kudla-Millson Thetalift ξ-Urbilder unärer Thetafunk-
tionen vom Gewicht 3/2 und 1/2, deren holomorphe Teile rationale Fourierkoeffizienten
haben. Wir benutzen diese Urbilder auch, um Petersson Skalarprodukte von harmonis-
chen Maaßformen vom Gewicht 1/2 und 3/2 mit unären Thetafunktionen zu berechnen,
und erhalten dadurch Formeln und Rationalitätsresultate für die Weyl-Vektoren von
Borcherds-Produkten an den Spitzen. Dieser Teil basiert auf einer gemeinsamen Arbeit
mit Jan Hendrik Bruinier [BS17].

Im dritten Teil erweitern wir Borcherds’ regularisierten Thetalift in Signatur (1, 2)
auf den vollen Raum der harmonischen Maaßformen vom Gewicht 1/2, also Formen,
deren nicht-holomorpher Teil bei∞ linear exponentiell wachsen darf. Wir erhalten reell-
analytische modulare Funktionen mit logarithmischen Singularitäten an CM-Punkten
und neuen Typen von Singularitäten entlang von Geodäten in der oberen Halbebene.
Außerdem benutzen wir den Thetalift, um modulare Integrale vom Gewicht 2 mit ratio-
nalen Periodenfunktionen zu konstruieren, deren Koeffizienten durch Linearkombinatio-
nen von Fourierkoeffizienten von harmonischen Maaßformen vom Gewicht 1/2 gegeben
sind.



Abstract

In this thesis we study regularized theta lifts between various spaces of harmonic Maass
forms and their applications. The work consists of three main parts.

In the first part we investigate the so-called Millson theta lift, which maps harmonic
Maass forms of weight −2k (with k ∈ Z≥0) for congruence subgroups of SL2(Z) to vector
valued harmonic Maass forms of weight 1/2−k. We show that the Fourier coefficients of
the lift of a harmonic Maass form F are given by traces of CM values and cycle integrals
of non-holomorphic modular forms arising from F by application of certain differential
operators, and that the Millson lift is related to the classical Shintani theta lift via the
ξ-operator. This part is based on joint work with Claudia Alfes-Neumann [ANS16].

The second part discusses some new applications of the Millson and the Kudla-Millson
theta lifts. First we construct completions of two of Ramanujan’s mock theta functions
using the Millson lift of a suitable weakly holomorphic modular function F and use this
to derive formulas for the coefficients of the mock theta functions in terms of traces
of CM values of F . Further, we use the Millson and the Kudla-Millson theta lifts to
obtain ξ-preimages of unary theta functions of weight 3/2 and 1/2 whose holomorphic
parts have rational Fourier coefficients. We also use these preimages to compute the
Petersson inner products of harmonic Maass forms of weight 1/2 and 3/2 with unary
theta series, and thereby obtain formulas and rationality results for the Weyl vectors of
Borcherds products at the cusps. This part is based on joint work with Jan Hendrik
Bruinier [BS17].

In the third part we extend Borcherds’ regularized theta lift in signature (1, 2) to
the full space of harmonic Maass forms of weight 1/2, i.e., those forms whose non-
holomorphic part is allowed to grow linearly exponentially at∞. We obtain real analytic
modular functions with logarithmic singularities at CM points and new types of singular-
ities along geodesics in the upper half-plane. Further, we use the theta lift to construct
modular integrals of weight 2 with rational period functions, whose coefficients are given
by linear combinations of Fourier coefficients of harmonic Maass forms of weight 1/2.
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1 Introduction

1.1 Regularized theta lifts

Over the last two decades, starting with the fundamental work of Borcherds [Bor95,
Bor98], regularized theta lifts between spaces of integral and half-integral weight auto-
morphic forms have become a powerful tool in number theory. For example, Bruinier
and Funke [BF06] used the so-called Kudla-Millson theta lift from weight 0 to weight
3/2 harmonic Maass forms to give a new proof and generalizations of Zagier’s [Zag02]
famous result on the modularity of the generating series of traces of singular moduli.
Further, in [BO13], Bruinier and Ono used a variant of the Kudla-Millson theta lift to
obtain a finite algebraic formula for the partition function p(n) in terms of traces of CM
values of a certain non-holomorphic modular function. A similar theta lift, which maps
weight 0 to weight 1/2 harmonic Maass forms (which will be called the Millson theta
lift in this work), was used in [AGOR15] to prove a refinement of a theorem of [BO10b]
connecting the vanishing of the central derivative of the twisted L-function of a weight
2 newform and the rationality of some coefficient of the holomorphic part of a weight
1/2 harmonic Maass form.

The present work is concerned with the study of various theta lifts between spaces
of harmonic Maass forms of integral and half-integral weight, their interplay, and their
applications. Roughly speaking, by a theta lift we mean an integral operator of the
shape

I(F, τ) =

∫
Γ\H

F (z)Θ(τ, z)yk
dx dy

y2
,

where H = {z = x+iy ∈ C : y > 0} is the complex upper half-plane on which Γ = SL2(Z)
acts by Möbius transformations, F : H → C is some function which transforms like a
modular form of weight k for Γ, and Θ(τ, z) is an integral kernel constructed as a theta
function, which transforms like a modular form of weight k in z and like a modular
form of some weight ` in τ . Here k and ` are usually integers or half-integers. If the
theta integral I(F, τ) exists for each τ ∈ H, then it transforms like a modular form of
weight `, so we obtain a linear map from weight k to weight ` automorphic forms. Such
a map is very useful in constructing new examples of modular objects from known ones,
and to carry over results from one space of automorphic forms to another.

In many cases, depending on the conditions imposed on F and the properties of the
chosen theta function Θ(τ, z), the integral diverges and has to be regularized in a
suitable way to give it a meaning. For example, a simple regularization which works in
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1 Introduction

many cases of interest to us is given by∫ reg

Γ\H
F (z)Θ(τ, z)yk

dx dy

y2
= lim

T→∞

∫
FT
F (z)Θ(τ, z)yk

dx dy

y2
,

where
FT = {z = x+ iy ∈ H : |x| ≤ 1/2, |z| ≥ 1, y ≤ T}

is a truncated fundamental domain for the action of Γ on H. This regularization basically
prescribes the order of integration. Once the convergence of a suitable regularization
has been established, one can go on to study the most basic properties of the theta lift,
e.g., its analytic properties (depending on the regularity of the input F ) and its Fourier
expansion. It often turns out that such a lift maps eigenforms of the invariant Laplace
operator to eigenforms having related eigenvalues, and that it has a Fourier expansion
involving interesting arithmetic information about the input form F , such as traces of
CM values of F , for example. Besides the study of a single theta lift it is interesting
to study the relations between different lifts, i.e., lifts constructed from different theta
functions. Some theta functions are related by differential equations which translate
into relations between the corresponding theta lifts.

In this work we will mainly consider regularized theta lifts of harmonic Maass forms.
Following Bruinier and Funke [BF04], a harmonic Maass form of weight k is a smooth
function F : H → C which transforms like a modular form of weight k, is annihilated
by the weight k Laplace operator

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
,

and is at most of linear exponential growth at the cusps. One of the most famous
applications of harmonic Maass forms is Zwegers’ [Zwe02] discovery that Ramanujan’s
mock theta functions can be ‘completed’ to harmonic Maass forms by addition of suit-
able non-holomorphic functions, i.e., mock theta functions are the holomorphic parts of
harmonic Maass forms. More generally, it often turns out that the generating series of
interesting sequences (such as Hurwitz class numbers of imaginary quadratic fields or
traces of CM values of modular functions, for example) are not quite modular, but are
holomorphic parts of harmonic Maass forms. By computing the Fourier expansions of
regularized theta lifts of suitable input functions one can often obtain the completions
of interesting generating series. For example, one can construct many of Ramanujan’s
mock theta functions as theta lifts, giving their completions in a unified and conceptual
way.

The work starts with a chapter on the necessary preliminaries about theta functions,
theta lifts and harmonic Maass forms. The Chapters 3,4 and 5 contain the main results
of this thesis. We close with a short outlook on future projects and open problems related
to this work. Let us briefly describe the contents of the main chapters. The results of
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1.1 Regularized theta lifts

each of the three main chapters are explained in more detail in separate introductions
below.

Most of the material in the preliminaries is well known and documented in the liter-
ature. The polynomial growth estimates for the coefficients of the holomorphic parts of
harmonic Maass forms whose holomorphic principal part vanishes in Section 2.3.8 are
new.

In Chapter 3 we investigate the Millson theta lift. It maps harmonic Maass forms of
weight −2k to harmonic Maass forms of weight 1/2− k (for k ∈ Z≥0), and it is related
to the Shintani theta lift via the ξ-operator. Further, its Fourier coefficients are given
by traces of CM values and traces of cycle integrals of automorphic forms arising from
F via differential operators (see Section 1.2).

In Chapter 4 we dicuss applications of the Kudla-Millson theta lift studied by Bruinier
and Funke [BF06] and the Millson lift studied in this work and in [AGOR15, Alf15].
We realize two of Ramanujan’s mock theta functions as images under the Millson lift
of a weakly holomorphic modular function F , thereby obtaining new formulas for the
coefficients of the mock theta functions in terms of traces of CM values of F . Further,
we construct ξ-preimages of unary theta functions by choosing appropriate inputs for
the Kudla-Millson and the Millson theta lift, and we use these preimages to compute
inner products of unary theta functions with harmonic Maass forms, yielding formulas
and algebraicity results for Weyl vectors of Borcherds products (see Section 1.3).

Finally, in Chapter 5 we extend the Borcherds theta lift to general harmonic Maass
forms of weight 1/2. This leads to Γ-invariant functions which are real analytic on H up
to logarithmic singularities at CM points and certain new singularities along geodesics
in the upper half-plane. As an application, we consider the derivative of the Borcherds
lift to construct automorphic integrals with rational period functions of weight 2 (see
Section 1.4).

We will now give some more details on the main results of this work. Throughout we
use the notations τ = u+ iv, z = x+ iy ∈ H and e(z) = e2πiz for z ∈ C.

3



1 Introduction

1.2 The Millson theta lift

A famous result of Zagier [Zag02] states that the twisted traces of singular moduli, i.e.
the values of the modular j-invariant at quadratic irrationalities in the upper half-plane,
occur as the Fourier coefficients of weakly holomorphic modular forms of weight 1/2 and
3/2. For example, Zagier proved that the function

g1(τ) = q−1 − 2−
∑
D<0

tr+
J (D)q−D, tr+

J (D) =
∑

Q∈Q+
D/Γ

J(zQ)

|ΓQ|
,

is a weakly holomorphic modular form of weight 3/2 for Γ0(4). Here

J = j − 744 = q−1 + 196884q + 21493760q2 + . . .

is the modular j-function without its constant Fourier coefficient, the sum in the trace
runs over the (finitely many) Γ = SL2(Z)-classes of the set Q+

D of positive definite
integral binary quadratic forms Q(x, y) = ax2 + bxy+ cy2 of discriminant D = b2− 4ac,
ΓQ denotes the (finite) stabilizer of Q in Γ = Γ/{±1} and zQ ∈ H is the CM point
associated to Q, which is characterized by Q(zQ, 1) = 0. Bruinier and Funke [BF06]
showed that the generating series of the traces of singular moduli can be obtained as the
image of a certain theta lift of J . Using this approach, new proofs of Zagier’s results,
including the modularity of generating series of twisted traces of singular moduli, and
generalizations to higher weight and level have been studied in several recent works,
e.g. [AE13, BO13, Alf14, AGOR15]. For example, in [AGOR15] a twisted theta lift
from weight 0 to weight 1/2 harmonic Maass forms was defined which allowed to recover
Zagier’s generating series of weight 1/2 as a theta lift. Further, it turned out that this
lift is closely related to the Shintani lift via the ξ-operator on harmonic Maass forms.
The classical Shintani lift establishes a connection between integral and half-integral
modular forms [Shi75] and is an indispensable tool in the theory of modular forms.
Using this relationship between integral and half-integral weight modular forms a number
of remarkable theorems were proven, for example the famous theorem of Waldspurger
[Wal81, ZK81, GKZ87], which asserts that the central critical value of the twisted L-
function of an even weight newform is proportional to the square of a coefficient of a
half-integral weight modular form.

In her thesis [Alf15], Claudia Alfes-Neumann generalized the theta lift studied in
[AGOR15] to other weights, namely to a lift from weight −2k to weight 1/2−k harmonic
Maass forms (k ∈ Z≥0). This lift, which was called Bruinier-Funke lift in [Alf15], is
constructed (at least for even k) by modifying the Millson theta lift from [AGOR15] using
suitable differential operators, i.e., one first applies iterated Maass raising operators to
the input F to obtain something of weight 0, then plugs this into the weight 0 Millson lift
from [AGOR15], and finally applies suitable iterated Maass lowering operators to make
the resulting lift harmonic again. Alfes-Neumann showed (under the hypothesis that the

4



1.2 The Millson theta lift

level N of the input form is square free) that the lift indeed maps weight −2k to weight
1/2 − k harmonic Maass forms, she computed the lift of non-holomorphic Eisenstein
series and Maass-Poincaré series, and she proved that the coefficients of positive index
of the holomorphic part of the lift of a harmonic Maass form F are given by twisted
traces of CM values of Rk

−2kF , where Rk
−2k is an iterated Maass raising operator which

maps automorphic forms of weight −2k to forms of weight 0. At the end of her thesis,
she raised the question if there could be a relation between the higher weight Bruinier-
Funke lift and the Shintani lift via the ξ-operator as in the case k = 0, and she asked
for a formula for the remaining Fourier coefficients of the lift.

In joint work [ANS16], we proceeded to resolve both problems, and to generalize the
lift to harmonic Maass forms for arbitrary congruence subgroups. To this end, we study
a (at first glance different) generalization of the theta lift considered in [AGOR15], which
we call the Millson theta lift. Our lift also maps weight −2k to weight 1/2−k harmonic
weak Maass forms, where k ∈ Z≥0. It is constructed using a ‘higher weight’ version
of the theta function used in [AGOR15], due to [Cra15]. We call it the Millson theta
function. Luckily, using the higher weight Millson theta function it is easy to show that
the Millson lift is related to the Shintani lift via the ξ-operator for all k ≥ 0 as in the
weight k = 0 case. Eventually, we prove that the Millson lift (constructed using the
higher weight Millson theta function) and the Bruinier-Funke lift (constructed using the
weight k = 0 Millson theta function and differential operators) agree on harmonic Maass
forms up to a constant factor.

We completely determine the Fourier expansion of the Millson lift of a harmonic weak
Maass form F of weight −2k, and we show that the coefficients of the holomorphic part
of the lift are given by twisted traces of CM values of the weight 0 form Rk

−2kF , whereas
the coefficients of the non-holomorphic part are given by twisted traces of geodesic cycle

integrals of the weight 2k + 2 cusp form ξkF (z) = 2iyk ∂
∂z̄
F (z).

To illustrate our results, let us simplify the setup by restricting to modular forms for
the full modular group Γ = SL2(Z). In the body of this work we also treat forms for
arbitrary congruence subgroups by using the theory of vector valued modular forms for
the Weil representation associated to an even lattice of signature (1, 2).

We let z = x + iy ∈ H and q = e2πiz. Recall from [BF04] that a harmonic Maass
form of weight k ∈ Z is a smooth function F : H → C which is invariant under the
usual weight k slash operation of Γ, which is annihilated by the weight k hyperbolic
Laplace operator ∆k, and which is at most of linear exponential growth at ∞. The
space of such forms is denoted by Hk. We let H+

k be the subspace of harmonic Maass
forms F for which there is a Fourier polynomial PF =

∑
n≤0 a

+(n)qn ∈ C[q−1] such that

F − PF is rapidly decreasing at ∞. Every F ∈ H+
k has a Fourier expansion consisting

of a holomorphic part F+ and a non-holomorphic part F−,

F (z) = F+(z) + F−(z) =
∑

n�−∞

a+(n)qn +
∑
n<0

a−(n)Γ(1− k, 4π|n|y)qn, (1.2.1)

5



1 Introduction

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the incomplete Gamma function. Harmonic Maass forms

of half-integral weight for Γ0(4) are defined analogously. Important tools in the theory
of harmonic Maass forms are the Maass lowering and raising operators Lk = −2iy2 ∂

∂z̄

and Rk = 2i ∂
∂z

+ ky−1, which lower or raise the weight of a real analytic modular form
by 2, as well as the surjective antilinear differential operator ξk : H+

k → S2−k defined by

ξkF (z) = 2iyk ∂
∂z̄
F (z).

Let D ∈ Z be a discriminant. We let QD be the set of integral binary quadratic forms
Q(x, y) = ax2 + bxy + cy2 of discriminant b2 − 4ac = D. The modular group Γ acts
on QD from the right, with finitely many classes if D 6= 0. For D < 0 we can split
QD = Q+

DtQ
−
D into the subsets of positive definite (a > 0) and negative definite (a < 0)

forms. Further, for D < 0 the stabilizer ΓQ of Q ∈ QD in Γ = Γ/{±1} is finite, and for
D > 0 the stabilizer ΓQ is trivial if D is a square and infinite cyclic if D is not a square.

Let Q = [a, b, c] ∈ QD. For D < 0 there is an associated CM point zQ ∈ H defined by
Q(zQ, 1) = 0, while for D > 0 the solutions of a|z|2 + bx+ c = 0 define a geodesic cQ in
H, which is equipped with a certain orientation.

Let ∆ ∈ Z be a fundamental discriminant (possibly 1), and let

χ∆(Q) =


(

∆

n

)
, if (a, b, c,∆) = 1 and Q represents n with (n,∆) = 1,

0, otherwise,

(1.2.2)

be a genus character. For D < 0 and a Γ-invariant function F we define twisted traces
of CM values of F by

tr+
F,∆(D) =

∑
Q∈Q+

|∆|D/Γ

χ∆(Q)
F (zQ)

|ΓQ|
,

and for D > 0 and a function G transforming of weight 2k + 2 for Γ we define twisted
traces of cycle integrals of G by

trG,∆(D) =
∑

Q∈Q|∆|D/Γ

χ∆(Q)

∫
ΓQ\cQ

G(z)Q(z, 1)kdz,

whenever the integrals converge.

Let F ∈ H+
−2k be a harmonic Maass form. We define the Millson theta lift by

IM∆ (F, τ) =

∫ reg

Γ\H
F (z)ΘM,k,∆(τ, z)y−2k dx dy

y2
, (1.2.3)

where ΘM,k,∆(τ, z) is the twisted Millson theta function, and the integral has to be
regularized in a suitable way to ensure convergence. The theta function, and thus also
IM∆ (F, τ), transforms like a modular form of weight 1/2 − k in τ . We remark that the
Millson theta function for SL2(Z), and hence the Millson theta lift, vanishes identically

6



1.2 The Millson theta lift

for trivial reasons unless (−1)k∆ < 0.

For k ∈ Z≥0 with (−1)k∆ < 0 the ∆-th Shintani lift of a cusp form G ∈ S2k+2 is (in
our normalization) defined by

ISh∆ (G, τ) = −|∆|−(k+1)/2
∑
D>0

trG,∆(D)qD.

It is well known that the Shintani lift of G ∈ S2k+2 is a cusp form of weight k + 3/2 for
Γ0(4) which satisfies the Kohnen plus space condition, i.e., the D-th Fourier coefficient
vanishes unless (−1)k+1D ≡ 0, 1(4). Further, it is also given by a theta lift of G.

We are now ready to state our main result for the Millson theta lift.

Theorem 1.2.1. Let k ∈ Z≥0 such that (−1)k∆ < 0 and let F ∈ H+
−2k with vanishing

constant term a+(0).

1. The Millson theta lift IM∆ (F, τ) is a harmonic Maass form in H+
1/2−k(Γ0(4)) satis-

fying the Kohnen plus space condition. Further, if F is weakly holomorphic, then
so is IM∆ (F, τ).

2. IM∆ (F, τ) is related to the Shintani lift of ξ−2k,zF ∈ S2k+2 by

ξ1/2−k,τI
M
∆ (F, τ) = −4k

√
|∆|ISh∆ (ξ−2k,zF, τ),

that is, the following diagram is commutative (up to scaling factors)

M !
−2k

//

IM∆

��

H+
−2k

ξ−2k //

IM∆

��

S2k+2

ISh∆

��
M !

1
2
−k

// H+
1
2
−k

ξ1/2−k // S 3
2

+k.

3. The Fourier expansion of IM∆ (F, τ) is given by

IM∆ (F, τ) =
∑
D<0

2√
|D|

(
1

2π
√
|∆D|

)k

tr+
Rk−2kF,∆

(D)q−D

−
∑
b>0

2iε

(
1

2πi|∆|

)k∑
n<0

(
∆

n

)
a+(nb)(4πn)kq−|∆|b

2

−
∑
D>0

1

2(πD)k+1/2|∆|k/2
trξ−2kF,∆(D)Γ(1/2 + k, 4πDv)q−D,

7



1 Introduction

where Rk
−2k = R−2 ◦ R−4 ◦ · · · ◦ R−2k is the iterated Maass raising operator and ε

equals 1 or i according to whether ∆ > 0 or ∆ < 0.

Remark 1.2.2. 1. The general results for harmonic Maass forms of higher level can
be found in Proposition 3.4.1 and Theorem 3.4.3.

2. The assumption a+(0) = 0 was imposed here to simplify the exposition in the
introduction and will not be used in the main part of this work. If a+(0) 6= 0 then
IM∆ (F, τ) also has a constant coefficient, and for k = 0 further non-holomorphic
terms appear. In fact, for k = 0 the ξ-image of the Millson lift IM∆ (F, τ) of a weakly
holomorphic modular function F with non-vanishing constant coefficient turns out
to be a linear combination of unary theta series of weight 3/2. Thus, using the
theta lift, one can obtain formulas for the coefficients of mock theta functions of
weight 1/2 as traces of modular functions, similarly as in [Alf14]. We apply this
idea in Section 4.1.

3. In [BGK14], the authors studied a so-called Zagier lift, which (for level 1 and
k > 1) maps weight −2k to weight 1/2 − k harmonic Maass forms. The proof of
the modularity of this lift uses the Fourier coefficients of non-holomorphic Poincaré
series together with the fact that a harmonic Maass form of negative weight is
uniquely determined by its principal part. Thus their proof does not work for
k = 0. In fact, the Zagier lift agrees with our lift in level 1, so our theorem
generalizes Proposition 6.2 of [BGK14] to arbitrary level and to k = 0, using a
very different proof.

4. Integrating ΘM,k,∆(τ, z) in τ against a harmonic Maass form of weight 1/2−k yields
a so-called locally harmonic Maass form of weight −2k. This lift was considered
in [Höv12], [BKV13] and [Cra15], and it was shown that the resulting theta lift is
related to the Shimura lift via the ξ-operator.

Example 1.2.3. Let k = 0 and ∆ < 0. For m ∈ Z≥0 we let Jm ∈ M !
0(Γ) denote the

unique weakly holomorphic modular function for SL2(Z) whose Fourier expansion starts
Jm = q−m+O(q), e.g., J0 = 1, J1 = j−744. The ∆-th twisted Millson lift of Jm is given
by

IM∆ (Jm, τ) = 2
∑
n|m

(
∆

m/n

)
q∆n2

+ 2
∑
D<0

1√
|D|

tr+
Jm,∆

(D)q−D = 2
∑
n|m

(
∆

m/n

)
f|∆|n2 .

where fd (for a discriminant −d < 0) denotes the unique weakly holomorphic modular
form of weight 1/2 for Γ0(4) in the plus space with Fourier expansion q−d+O(q), compare
[Zag02].

As a part of the proof of the above theorem, we show that the so-called Bruinier-Funke
theta lift studied in [Alf15], which is a theta lift constructed from the k = 0 Millson

8



1.2 The Millson theta lift

theta function and suitable applications of iterated Maass raising and lowering operators,
essentially agrees with the Millson theta lift on harmonic Maass forms of weight −2k.
This identity of theta lifts is a bit surprising and interesting in its own right, but due to
its quite technical appearence we chose not to state it in the introduction. We refer the
reader to Theorem 3.2.3.

The relation between the Millson lift and the Shintani lift also yields an interesting
criterion for the vanishing of the twisted L-function of a newform at the critical point.

Theorem 1.2.4. Let F ∈ H+
−2k, with vanishing constant term a+(0) if k = 0, such that

G = ξ−2kF ∈ S2k+2 is a normalized newform. For (−1)k∆ < 0 the lift IM∆ (F, τ) is weakly
holomorphic if and only if L(G,χ∆, k + 1) = 0.

Remark 1.2.5. For the general result regarding forms of higher level see Theorem 3.4.2.
A version of this theorem for square-free level N and odd weight k has been proved in
[Alf14], Theorem 1.1, using the same techniques. Further, the above theorem in the case
of level 1 and k > 0 already appeared in [BGK14], Corollary 1.3.

The Fourier coefficients of the non-holomorphic part of the Millson theta lift in The-
orem 1.2.1 involve cycle integrals of the cusp form ξ−2kF , which reflects the relation
between the Millson and the Shintani lift on the level of Fourier expansions. On the
other hand, the fact that the Millson theta lift agrees up to some constant with a theta
lift of the real-analytic modular function Rk

−2kF , see Theorem 3.2.3, suggests that the
Fourier coefficients of the non-holomorphic part of the Millson lift should also be express-
ible in terms of cycle integrals of Rk

−2kF . Inspired by this idea, we prove the following
identities between the cycle integrals of different types of modular forms.

Theorem 1.2.6. Let D > 0 be a discriminant which is not a square and let Q ∈ QD.
Let k ∈ Z≥0 and F ∈ H+

−2k. For j ∈ Z≥0 we have

C(R2j+1
−2k F,Q) =

1

Dk−j
j!(k − j)!(2k)!

k!(2k − 2j)!
C(ξ−2kF,Q),

where

C(G,Q) =

∫
ΓQ\cQ

G(z)Q(z, 1)kdz

is the cycle integral of a function G transforming of weight 2k+2, and R2j+1
−2k = R−2k+2j ◦

· · · ◦R−2k is the iterated Maass raising operator.

We prove this identity by a direct computation using Stokes’ theorem and commuta-
tion relations for the differential operators involved.

Remark 1.2.7. 1. It is interesting to note that the cycle integral of ξ−2kF on the
right-hand side does not depend on j. In particular, the cycle integrals of R2j+1

−2k F
for different choices of j are related by a very simple explicit constant.

9
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2. The general result is given in Corollary 3.6.2. By plugging in special values for j,
e.g. j = k, we obtain further interesting formulas (see Corollaries 3.6.3 and 3.6.4),
which were previously given in Theorem 1.1 from [BGK14] and Theorem 1.1 from
[BGK15]. The above identity gives a unified proof for these two previously known,
but seemingly unrelated results.

3. We also define a regularized cycle integral Creg(R2j+1
−2k F,Q) in the case that the

discriminant of Q is a square and the associated geodesic is infinite, and derive an
analog of the above theorem in this situation, see Section 3.6.2.

10



1.3 Applications of the Millson and Kudla-Millson theta lifts

1.3 Applications of the Millson and Kudla-Millson theta
lifts

We discuss some new applications of the Kudla-Millson lift from [BF06] and the Millson
lift studied in this work. This chapter is based on joint work with Jan Hendrik Bruinier,
see [BS17].

Algebraic formulas for Ramanujan’s mock theta functions

We give finite algebraic formulas for the coefficients of Ramanujan’s order 3 mock theta
functions f(q) and ω(q) in terms of traces of CM values of a weakly holomorphic modular
function (see Theorem 4.1.1). For example, we show that the coefficients af (n), n ≥ 1,
of Ramanujan’s mock theta function

f(q) = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
= 1 +

∞∑
n=1

af (n)qn (1.3.1)

are given by

af (n) = − 1√
24n− 1

Im

( ∑
Q∈Qn

F (zQ)

ωQ

)
,

where

F (z) = − 1

40
· E4(z) + 4E4(2z)− 9E4(3z)− 36E4(6z)

(η(z)η(2z)η(3z)η(6z))2
= q−1 − 4− 83q + . . . (1.3.2)

is a Γ0(6)-invariant weakly holomorphic modular function, Qn is the (finite) set of
Γ0(6)-equivalence classes of positive definite integral binary quadratic forms Q(x, y) =
ax2 + bxy + cy2 of discriminant 1 − 24n with 6 | a and b ≡ 1(12), zQ ∈ H is the CM
point characterized by Q(zQ, 1) = 0, and ωQ is half the order of the stabilizer of Q
in Γ0(6). Moreover, E4 denotes the normalized Eisenstein series of weight 4 for Γ and
η = q1/24

∏∞
n=1(1− qn) is the Dedekind eta function.

For the proof, we use Zwegers’ [Zwe02] realization of Ramanujan’s mock theta func-
tions as the holomorphic parts of vector valued harmonic Maass forms of weight 1/2,
then construct the corresponding harmonic Maass form as the Millson lift of F , and
finally obtain the formula by comparing Fourier coefficients.

Rationality results for harmonic Maass forms

By applying the Kudla-Millson and the Millson theta lifts to a suitable weakly holomor-
phic input function, we construct harmonic Maass forms of weight 3/2 and 1/2 whose

11
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images under the differential operator ξk = 2ivk ∂
∂τ̄

are vector valued unary theta func-
tions of weight 1/2 and 3/2, and whose holomorphic parts (which are mock modular
forms) are given by traces of CM values of the input function (see Theorem 4.2.4). This
implies that these mock modular forms have rational coefficients (see Theorem 4.2.6),
which in turn yields a rationality result for the holomorphic parts of harmonic Maass
forms that map to the space of unary theta functions under ξ (see Theorem 4.2.8).

More specifically, we show that if f is a vector valued harmonic Maass form of weight
1/2 whose principal part is defined over a number field K, and whose shadow lies in
the space of unary theta functions, then all coefficients of the holomorphic part of f lie
in K. This contrasts a conjecture of Bruinier and Ono [BO10b], stating that if f is a
harmonic Maass form of weight 1/2 whose shadow is orthogonal to the space of unary
theta functions, then all but a set of density 0 of the non-vanishing coefficients of the
holomorphic part of f should be transcendental.

Inner product formulas and Weyl vectors of Borcherds products

We use our ξ-preimages to evaluate the regularized Petersson inner product of a harmonic
Maass form f and a unary theta function of weight 1/2 (see Theorem 4.3.1), and apply
this to compute the Weyl vectors of the Borcherds product of f (see Corollary 4.3.4). For
example, for N = 1 the Borcherds product associated to a weakly holomorphic modular
form f =

∑
n�−∞ cf (n)qn of weight 1/2 for Γ0(4) in the Kohnen plus space with rational

coefficients and integral principal part is given by

Ψ(z, f) = qρf
∞∏
n=1

(1− qn)cf (n2), (q = e2πiz),

where ρf is the so-called Weyl vector of f . The product converges for Im(z) � 0 large
enough and extends to a meromorphic modular form of weight cf (0) for Γ, whose divisor
on H is a Heegner divisor. For higher level N , the orders of Ψ(z, f) at the cusps of Γ0(N)
are determined by Weyl vectors associated to the cusps. These vectors are essentially
given by regularized inner products of f with a unary theta function of weight 1/2, and
can be explicitly evaluated in terms of the coefficients of the holomorphic part of f and
the coefficients of the holomorphic part of a ξ-preimage of the unary theta function. In
particular, we show that all Weyl vectors associated to a harmonic Maass form with
rational holomorphic coefficients are rational (see Corollary 4.3.3).

12



1.4 Borcherds lifts of harmonic Maass forms

1.4 Borcherds lifts of harmonic Maass forms

In [Bor95], Borcherds defined a regularized theta lift which maps weakly holomorphic
modular forms of weight 1/2 to real analytic modular functions with logarithmic singu-
larities at CM points. His results were generalized to twisted lifts of harmonic Maass
forms which map to cusp forms under ξ1/2 by Bruinier and Ono [BO10b]. We extend the
lift to general harmonic Maass forms (which may map to weakly holomorphic modular
forms under ξ1/2) and give some applications. In the introduction, we restrict to modular
forms for the full modular group Γ = SL2(Z) for simplicity, but in the body of the work
we treat modular forms of arbitrary level Γ0(N).

A harmonic Maass form of weight 1/2 for Γ0(4) is a smooth function f : H→ C which
is annihilated by the invariant Laplace operator ∆1/2, transforms like a modular form
of weight 1/2 for Γ0(4), and grows at most linearly exponentially at the cusps of Γ0(4).
Such a form can be written as a sum f = f+ + f− with a holomorphic part f+ and a
non-holomorphic part f− with Fourier expansions of the shape

f+(τ) =
∑
D∈Z

c+
f (D)e(Dτ)

f−(τ) = c−f (0)
√
v +

∑
D<0

c−f (D)
√
vβ1/2(4π|D|v)e(Dτ)

+
∑
D>0

c−f (D)
√
vβc1/2(−4πDv)e(Dτ),

with coefficients c±f (D) ∈ C, where β1/2(s) =
∫∞

1
e−stt−1/2dt and βc1/2(s) =

∫ 1

0
e−stt−1/2dt.

Note that we use a slightly different normalization of the Fourier expansion compared
to the one in (1.2.1), since it is more convenient here. We let H1/2 denote the space of
harmonic Maass forms satisfying the Kohnen plus space condition, which means that
the Fourier expansion is supported on indices D ≡ 0, 1(4).

Let ∆ be a fundamental discriminant. For simplicity, we assume that ∆ > 1 in the
introduction. We define the Borcherds lift Φ∆(z, f) of a harmonic Maass form f ∈ H1/2

by the regularized integral

Φ∆(f, z) = CTs=0

[
lim
T→∞

∫ reg

FT (4)

f(τ)Θ∆(τ, z)v1/2−sdu dv

v2

]
,

where Θ∆(τ, z) is a twisted Siegel theta function which transforms in τ like a modular
form of weight 1/2 for Γ0(4) and is invariant in z under Γ, FT (4) denotes a suitably
truncated fundamental domain for Γ0(4)\H, and CTs=0 F (s) denotes the constant term
in the Laurent expansion at s = 0 of a function F (s) which is meromorphic near s = 0.
Borcherds [Bor98] proved that for ∆ = 1 and a weakly holomorphic modular form
f ∈ M !

1/2 the regularized theta lift Φ∆(f, z) defines a Γ-invariant real analytic function
with logarithmic singularities at certain CM points in H, which are determined by the

13
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principal part of f . Bruinier and Ono [BO10b] showed that this result remains true
for twisted Borcherds lifts of harmonic Maass forms f ∈ H+

1/2, i.e. forms which map to
cusp forms under ξ1/2. One of the main aims of the present work is to generalize the
Borcherds lift Φ∆(z, f) to the full space H1/2.

We let H+
∆(f) be the set of all CM points zQ corresponding to quadratic forms Q ∈

Q∆D with D < 0 such that c+
f (D) 6= 0, and we let H−∆(f) be the union of all geodesics

cQ corresponding to quadratic forms Q ∈ Q∆D with D > 0 such that c−f (D) 6= 0. We
obtain the following extension of the Borcherds lift on the full space H1/2.

Theorem 1.4.1. Let ∆ > 1 be a fundamental discriminant. For f ∈ H1/2 the Borcherds
lift Φ∆(f, z) defines a Γ-invariant harmonic function on H \ (H+

∆(f) ∪ H−∆(f)). It has
‘logarithmic singularities’ at the CM points in H+

∆(f), and ‘arcsin singularities’ along
the geodesics in H−∆(f). More precisely, this means that for z0 ∈ H+

∆(f) ∪ H−∆(f) the
function

Φ∆(f, z)−
∑
D<0

c+
f (D)

∑
Q∈Q∆D
z0=zQ

χ∆(Q) log |az2 + bz + c|

+
∑
D>0

c−f (D)
√
D

∑
Q∈Q∆D
z0∈cQ

χ∆(Q) arcsin

 1√
1 + 1

∆Dy2 (a|z|2 + bx+ c)2

 .

can be continued to a real analytic function near z0. Here χ∆ is the genus character
defined in (1.2.2). Note that all the above sums are finite.

We refer the reader to Theorem 5.1.1 for the general result.

Remark 1.4.2. The logarithmic singularities imply that the Borcherds lift blows up at
the Heegner points zQ ∈ H+

∆(f), and the arcsin singularities show that it is continuous
but not differentiable at points on the geodesics cQ ⊂ H−∆(f).

Using non-holomorphic Maass-Poincaré series one can always write a harmonic Maass
form f ∈ H1/2 as f = f1 + f2 where f1, f2 ∈ H1/2 satisfy c+

f1
(n) = 0 for all n < 0 and

c−f2
(n) = 0 for all n ≥ 0. In particular, we have f2 ∈ H+

1/2, and since the Borcherds

lift of harmonic Maass forms in H+
1/2 has already been investigated by Bruinier and

Ono [BO10b], we assume from now on that c+
f (n) = 0 for all n < 0. In this case, the

Borcherds lift Φ∆(f, z) only has singularities along the geodesics in H−∆(f). Furthermore,
the Fourier expansion of Φ∆(f, z) can be stated as follows.

Proposition 1.4.3. Let ∆ > 1 be a fundamental discriminant and let f ∈ H1/2 such
that c+

f (n) = 0 for all n < 0. Then for z ∈ H \ H−∆(f) the Borcherds lift of f has the
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Fourier expansion

Φ∆(f, z) = −4
∞∑
m=1

c+
f (∆m2)

∑
b(∆)

(
∆

b

)
log |1− e(mz + b/∆)|

+
√

∆L(1, χ∆)
(
2c+
f (0) + y c−f (0)

)
− 4

∑
D>0

c−f (D)
√
D

∑
Q∈Q∆D
a>0

χ∆(Q)1Q(z)

(
arctan

(
y
√

∆D

a|z|2 + bx+ c

)
+
π

2

)
,

where 1Q(z) denotes the characteristic function of the bounded component of H \ cQ.

For the general result, see Proposition 5.2.2.

Remark 1.4.4. 1. For Q ∈ Q∆D with a > 0 the corresponding geodesic cQ is a semi-
circle centered at the real line which divides H into a bounded and an unbounded
connected component, so the characteristic function 1Q makes sense.

2. The sum over D in the third line is finite since f has a finite principal part. The
sum over Q ∈ Q∆D is locally finite since each point z ∈ H lies in the bounded
component of H \ cQ for finitely many geodesics cQ ∈ Q∆D, and it vanishes for
y � 0 large enough since the imaginary parts of points lying on geodesics cQ for
Q ∈ Q∆D are smaller than

√
∆D.

3. We have z ∈ cQ for Q = [a, b, c] if and only if a|z|2 + bx + c = 0. Further, for
a > 0 a point z ∈ H lies in the inside of the bounded component of H \ cQ if and
only if a|z|2 + bx+ c < 0. Since limx→−∞ arctan(x) = −π

2
, we see from the Fourier

expansion that Φ∆(f, z) is continuous. However, computing the derivative of the
above expansion for z ∈ H \H−∆(f) shows that the third line is not differentiable
at points z ∈ H−∆(f). More precisely, the derivative of Φ∆(f, z) has jumps along
the geodesics in H−∆(f).

We apply the (derivative of the) Borcherds lift to certain interesting harmonic Maass
forms of weight 1/2 for Γ0(4), in order to construct modular integrals of weight 2 with
rational period functions. In [DIT11], Duke, Imamoglu and Tóth constructed a basis
{hd} (indexed by discriminants d > 0) of H1/2, which under ξ1/2 maps to a basis {gd} of
the space of weakly holomorphic modular forms of weight 3/2 for Γ0(4). More precisely,
the gd are the generating series of traces of singular moduli, see [Zag02]. The coefficients
of the hd are given by traces of CM values and traces of (regularized) cycle integrals of
weakly holomorphic modular functions for Γ. For example, the Fourier expansion of the
function h = h1 is given by

h(τ) =
1

2π

∑
D>0

trJ(D)qD + 2
√
vβc1/2(−4πv)q − 8

√
v + 2

√
v
∑
D<0

tr+
J (D)β1/2(4π|D|v)qD.
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Here the traces for D > 0 being a square need to be regularized as explained in [BFI15].
The harmonic Maass form h does in general not map to a cusp form but to a weakly
holomorphic modular form under ξ1/2, so it is interesting to apply our extension of the
Borcherds lift to it. The coefficients c+

h (D) for D ≤ 0 vanish, so the Borcherds lift
Φ∆(h, z) is a harmonic Γ-invariant function on H\H−∆(h) with arcsin singularities along
the geodesics in H−∆(h). In this case, the latter set is just the union of all geodesics cQ
for Q ∈ Q∆. Hence the derivative Φ′∆(h, z) = ∂

∂z
Φ∆(h, z) is a holomorphic function on

H \H−∆(h) transforming like a modular form of weight 2 for Γ. Moreover, it turns out
that Φ′∆(h, z) has jump singularities along the geodesics in H−∆(h), and admits a nice
Fourier expansion.

Proposition 1.4.5. Let ∆ > 1 be a fundamental discriminant. The derivative Φ′∆(h, z)
of the Borcherds lift of h is a holomorphic function on H \H−∆(h) which transforms like
a modular form of weight 2 for Γ. For z ∈ H \H−∆(h) it has the expansion

1

4πi
√

∆
Φ′∆(h, z)

=
1

2π
tr1(∆) +

1

2π

∞∑
n=1

∑
m|n

(
∆

n/m

)
m trJ(∆m2)

 e(nz) +
1

π

∑
Q∈Q∆
a>0

1Q(z)

Q(z, 1)
,

where 1Q denotes the characteristic function of the bounded component of H \ cQ.

The result for general harmonic Maass forms f ∈ H1/2 of higher level is given in
Proposition 5.3.3 and Corollary 5.3.5.

Remark 1.4.6. The Fourier series over n is holomorphic on H, whereas the sum over
Q has jump singularities along the geodesics cQ with Q ∈ Q∆. Again, the sum over Q
is locally finite and vanishes for y � 0 large enough.

In [DIT11], Theorem 5, the authors proved that the generating series

F∆(z) =
1

π

∞∑
m=0

trJm(∆)e(mz),

with Jm(z) = q−m +O(q) ∈M !
0, e.g. J0 = 1 and J1 = J , defines a holomorphic function

on H which transforms as

z−2F∆

(
−1

z

)
− F∆(z) =

2

π

∑
Q∈Q∆
c<0<a

1

Q(z, 1)
, (1.4.1)

so F∆(z) is a holomorphic modular integral of weight 2 with holomorphic rational period
functions in the sense of [Kno74], whose definition we now recall. A 1-cocycle for Γ with
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1.4 Borcherds lifts of harmonic Maass forms

values in the set R of rational functions on C is a map q : Γ→ R,M 7→ qM satisfying

qMM ′ = qM |2M ′ + qM ′

for all M,M ′ ∈ Γ, and a 1-coboundary is a 1-cocycle which can be written as qM =
r|2M − r for some fixed rational function r. We call q parabolic it qT = 0, and denote
the corresponding parabolic cohomology group by H1

par(Γ, R). For example, equation
(1.4.1) easily implies that the map

q∆
M =

∑
Q∈Q∆

aQM−1<0<aQ

1

Q(z, 1)

defines a parabolic 1-cocycle for Γ. Refining this construction, one can show that for
any Γ-class A of primitive indefinite binary quadratic forms the map

qAM =
∑
Q∈A

aQM−1<0<aQ

1

Q(z, 1)

defines a parabolic 1-cocycle (see also [DIT17]). Choie and Zagier [CZ93] constructed
an explicit basis {rA} for H1

par(Γ, R), which is labelled by the Γ-classes of primitive
indefinite binary quadratic forms, and which has the property that qA = rA + r−A.
More generally, the structure of H1

par(G,R) for any finite index subgroup G of Γ has
been determined using cohomological methods by Ash [Ash89]. It would be desirable to
construct an explicit basis of H1

par(G,R) for all finite index subgroups G of Γ, and we
hope to come back to this problem in the future.

A modular integral (of weight 2 with rational period functions) for a 1-cocycle q is a
holomorphic function F =

∑
n≥0 a(n)qn : H→ C such that

qM = F |2M − F

for each M ∈ Γ. For example, F∆ is a modular integral for (a multiple of) q∆. The
existence of modular integrals was proven by Knopp [Kno74], and the connection to
generating series of traces of cycle integrals of weakly holomorphic modular forms was
discovered by Duke, Imamoglu and Tóth [DIT10], [DIT11], [DIT17].

Returning to the derivative of the Borcherds lift of h, we note that

trJm(∆) =
∑
d|m

(
∆

m/d

)
d trJ1(∆d2), (1.4.2)

compare [Zag81], pp. 290–292, so F∆(z) in fact agrees with Φ′∆(h, z) up to some constant
factor if y � 0 is sufficiently large. The transformation behaviour of the singular part

17



1 Introduction

in the Fourier expansion of Φ′∆(h, z) can easily be determined, so we can recover (1.4.1)
from Proposition 1.4.5. Further, using the Borcherds lift we generalize the construction of
modular integrals of weight 2 with rational period functions from [DIT11] to higher level,
see Proposition 5.4.1. The coefficients of our modular integrals are linear combinations
of Fourier coefficients of the holomorphic parts of harmonic Maass forms f of weight 1/2.
Choosing f as the image of a theta lift of a harmonic Maass form F of weight 0 studied by
Bruinier, Funke and Imamoglu [BFI15], we obtain modular integrals whose coefficients
are linear combinations of traces of cycle integrals of F . In fact, the construction of F∆

as a theta lift and its generalizations to higher level were our main motivation to extend
the Borcherds lift to the full space H1/2.

Bruinier and Ono [BO10b] defined a twisted Borcherds product associated to a har-
monic Maass form f ∈ H+

1/2 with real coefficients c+
f (D) for all D, and c+

f (D) ∈ Z for
D ≤ 0. For ∆ > 1 a fundamental discriminant and y � 0 sufficiently large the twisted
Borcherds lift of f is given by

Ψ∆(f, z) =
∞∏
m=1

∏
b(∆)

[1− e(mz + b/∆)](
∆
b )c+f (∆m2).

It has a meromorphic continuation to H with roots and poles at CM points corresponding
to the principal part of f , and it transforms like a modular form of weight 0 with
some unitary character for Γ. We will define Borcherds products associated to general
harmonic Maass forms f ∈ H1/2. For simplicity, in the introduction we only consider
the harmonic Maass form πh. The general result is given in Theorem 5.4.10.

Theorem 1.4.7. Let ∆ > 1 be a fundamental discriminant. Then the infinite product

Ψ∆(z) = e
(
−
√

∆ tr1(∆)z
) ∞∏
m=1

∏
b(∆)

[1− e(mz + b/∆)](
∆
b ) trJ (∆m2)

converges to a holomorphic function on H. Its logarithmic derivative is given by

∂

∂z
log(Ψ∆(z)) = −2π2i

√
∆F∆(z).

Further, it transforms as

Ψ∆(z + 1) = e
(
−
√

∆ tr1(∆)
)

Ψ∆(z),

Ψ∆

(
−1

z

)
= e

−2
∑
Q∈Q∆
c<0<a

(
log

(
z − wQ
i− wQ

)
− log

(
z − w′Q
i− w′Q

))Ψ∆(z),

where wQ > w′Q denote the real endpoints of the geodesic cQ.
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2 Preliminaries

2.1 Quadratic forms, lattices and the Weil
representation

We start with the basic facts about quadratic modules, lattices and the Weil represen-
tation, and we give a brief introduction to the construction of Siegel theta functions
associated to an indefinite even lattice and a homogeneous polynomial. There are many
good books about the theory of quadratic forms, for example [CS99] and [Ebe02]. The
exposition on the Weil representation follows [Bru02], and the section on theta functions
is based on [Bor98].

2.1.1 Quadratic modules

In the following, we let R be a principal ideal domain and

M = Rb1 ⊕ · · · ⊕Rbm

with b1, . . . , bm ∈ M a finitely generated free R-module. A map Q : M → R is called a
quadratic form on M if it satisfies

Q(rx) = r2Q(x)

for all r ∈ R and x ∈M , and if the map

(x, y) = Q(x+ y)−Q(x)−Q(y)

is a symmetric bilinear form. If Q is non-degenerate, i.e., if (x, y) = 0 for all y ∈ M
implies x = 0, then the pair (M,Q) is called a quadratic module, or a quadratic space
if R is a field. The quadratic form Q is called positive (negative) definite if Q(x) > 0
(Q(x) < 0) holds for all x ∈ M \ {0}. The Gram matrix of (M,Q) with respect to a
basis B = (b1, . . . , bm) is defined as the matrix whose (i, j)-th entry is (bi, bj).

An isometry between two quadratic modules (M,Q) and (M ′, Q′) is an injective R-
linear map σ : M →M ′ with

Q′(σ(x)) = Q(x)

for all x ∈ M . The set of all isometries from M to itself is called the orthogonal group
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2 Preliminaries

of M and is denoted by O(M).

For a pair (p, q) of non-negative integers we let Rp,q denote the real quadratic space
Rp+q with the quadratic form

(x1, . . . , xp+q) 7→ x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q.

We let O(p, q) be its orthogonal group. Silvester’s law of inertia asserts that every real
quadratic space (V,Q) is isometrically isomorphic to Rp,q for a unique tuple (p, q), called
the signature of (V,Q). If (V,Q) is a rational quadratic space, we define its signature as
the signature of the real quadratic space V (R) = V ⊗ R with Q(x⊗ r) = r2Q(x).

2.1.2 The Weil representation associated to an even lattice

In this subsection we let (V,Q) be a rational quadratic space of dimension m. A lattice
L in V is a Z-module of rank m, i.e., a subset of the form

L = Zb1 ⊕ · · · ⊕ Zbm

for a basis (b1, . . . , bm) of V . The signature of L is defined as the signature of V (R). The
determinant det(L) of L is the determinant of any Gram matrix of L. It is independent
of the choice of basis of L. A lattice L is called integral if (x, y) ∈ Z for all x, y ∈ L, and
it is called even if (x, x) ∈ 2Z for all x ∈ L. Note that every even lattice is integral. An
element x ∈ L is called primitive if Qx∩L = Zx. It is called isotropic if Q(x) = 0. The
dual lattice of L is defined by

L′ = {x ∈ V : (x, y) ∈ Z for all y ∈ L}.

If L = Zb1 ⊕ · · · ⊕ Zbm, then L′ = Zb′1 ⊕ · · · ⊕ Zb′m, where (b′1, . . . , b
′
m) denotes the basis

of V defined by (bi, b
′
j) = δi,j. Thus L′ is indeed a lattice. The level of L is defined as

the smallest positive integer N such that NQ(x) ∈ Z for all x ∈ L′.
Let L be an even lattice of level N . Then L ⊆ L′ and NL′ ⊆ L, and by the elementary

divisors theorem the quotient L′/L is a finite abelian group of order | det(L)|, called the
discriminant group of L. The quadratic form Q on L induces a well-defined map

Q : L′/L→ Q/Z, Q(x+ L) = Q(x) modZ.

It satisfies Q(nx) = n2Q(x) modZ for n ∈ Z and x ∈ L′/L, and the map

(x+ L, y + L) = Q(x+ y)−Q(x)−Q(y) modZ

defines a non-degenerate symmetric Z-bilinear form on L′/L. The level of the discrim-
inant group L′/L is defined as the level of L, i.e., it is the smallest positive integer N
such that NQ(h) = 0 modZ for all h ∈ L′/L.
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2.1 Quadratic forms, lattices and the Weil representation

For each h ∈ L′/L we introduce a symbol eh, and we let

C[L′/L] =

 ∑
h∈L′/L

λheh : λh ∈ C


be the group ring of L′/L. The multiplication on C[L′/L] is defined by eh · eh′ = eh+h′ .
The natural inner product on C[L′/L] is given by〈 ∑

h∈L′/L

λheh,
∑

h∈L′/L

µheh

〉
=
∑

h∈L′/L

λhµh.

We let Mp2(R) be the metaplectic double cover of SL2(R), realized as the set of pairs
(M,φ), where

M =

(
a b
c d

)
∈ SL2(R)

and φ : H→ C is a holomorphic function such that

φ(τ)2 = cτ + d.

The group structure on Mp2(R) is defined by

(M,φ(τ)) · (M ′, φ′(τ)) = (MM ′, φ(M ′τ)φ′(τ)).

We let Γ̃ = Mp2(Z) denote the preimage of SL2(Z) under the natural covering map
Mp2(R)→ SL2(R). It is generated by the elements

S =

((
0 −1
1 0

)
,
√
τ

)
and T =

((
1 0
0 1

)
, 1

)
.

Further, we let Γ̃∞ be the subgroup of Γ̃ generated by T .

Let e(z) = e2πiz for z ∈ C. The Weil representation ρL of Γ̃ associated to the lattice

L is defined on the generators S and T of Γ̃ by

ρL(T )eh = e(Q(h))eh,

ρL(S)eh =
e((q − p)/8)√
|L′/L|

∑
h′∈L′/L

e(−(h′, h))eh′ .

We let ρ∗L denote the dual Weil representation, which acts by the complex conjugate of
the formula for the action of ρL defined above. The Weil representation factors through
SL2(Z/NZ) if p− q is even, and a double cover of SL2(Z/NZ) if p− q is odd. Further,
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2 Preliminaries

it is unitary with respect to the inner product on C[L′/L], i.e., it satisfies

〈ρL((M,φ))eh, ρL((M,φ))eh′〉 = 〈eh, eh′〉

for all (M,φ) ∈ Γ̃ and h, h′ ∈ L′/L. The element

Z = S2 = (ST )3 =

((
−1 0
0 −1

)
, i

)
acts as

ρL(Z)eh = iq−pe−h.

Explicit formulas for the actions of various congruence subgroups in the Weil represen-
tation can be found in [Sch09] for even signature and in [Str13] for odd signature.

2.1.3 Theta functions associated to indefinite lattices

Let (V,Q) be a rational quadratic space of signature (p, q). We let D be the Grass-
mannian of p-dimensional subspaces of V (R) = V ⊗ R on which Q is positive definite,
i.e.,

D = {z ⊆ V (R) : dim(z) = p,Q|z > 0}.

By Witt’s theorem the orthogonal group O(V (R)) ∼= O(p, q) acts transitively on D, so
if we pick a base point z0 ∈ D and let O(V (R))z0

∼= O(p) × O(q) denote its stabilizer,
we have a bijection

D ∼= O(V (R))/O(V (R))z0
∼= O(p, q)/(O(p)×O(q)),

which endows D with the structure of a smooth manifold. It admits a complex structure
if and only if the signature of V is (2, q) or (p, 2). For an explicit example we refer to
Section 2.2 where an identification of the Grassmannian of positive definite lines in a
quadratic space of signature (1, 2) with the complex upper half-plane H is given.

Let L ⊆ V be an even lattice. The Siegel theta function associated to the lattice L is
the C[L′/L]-valued function on H×D defined by

Θ(τ, z) = Im(τ)q/2
∑

h∈L′/L

∑
X∈h+L

e(τQ(Xz) + τ̄Q(Xz⊥))eh,

where Xz and Xz⊥ denote the orthogonal projections of X to z and z⊥, respectively.
The theta function is a smooth function in τ and z which is invariant in z under any
subgroup of O(L) fixing the classes of L′/L, and it satisfies the transformation formula

Θ(Mτ, z) = φ(τ)p−qρL(M,φ)Θ(τ, z)
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2.2 A quadratic space of signature (1, 2)

for all (M,φ) ∈ Γ̃, which can be proven using Poisson summation. In fact, the transfor-
mation formula for Θ(τ, z) naturally leads to the definition of the Weil representation
ρL. If L is positive definite, then the Grassmannian D consists of a single point, and the
Siegel theta function reduces to the usual theta function associated to L.

Borcherds [Bor98] defined a more general theta function by associating to a (possibly
complex valued) polynomial p on Rp,q and an isometry v : V (R)→ Rp,q the function

Θ(τ, v, p) =
∑

h∈L′/L

∑
X∈h+L

(
exp

(
− ∆

8π Im(τ)

)
p

)
(v(X)) · e(τQ(Xv+) + τ̄Q(Xv−))eh,

where

exp

(
− ∆

8π Im(τ)

)
p =

∞∑
k=0

1

k!
· ∆kp

(−8π Im(τ))k
, ∆ =

p+q∑
i=1

∂2

∂x2
i

,

is again a polynomial on Rp,q, v+ denotes the preimage under v of Rp ∼= {x ∈ Rp,q :
xp+1 = · · · = xp+q = 0} ⊆ Rp,q, and v− = (v+)⊥. Note that v+ defines an element in the
Grassmannian D, and for p = 1 we obtain

Im(τ)q/2Θ(τ, v, 1) = Θ(τ, v+),

but for an arbitrary polynomial p the function Θ(τ, v, p) will in general not define a
function on D.

We call p harmonic if ∆p = 0, and homogeneous of degree (m+,m−) if it is homoge-
neous of degree m+ in the first p variables and of degree m− in the last q variables of
Rp,q. The following result can again be proven using Poisson summation.

Theorem 2.1.1 ([Bor98], Theorem 4.1). If p is a polynomial on Rp,q which is homoge-
neous of degree (m+,m−) then

Θ(Mτ, v, p) = φ(τ)p+2m+

φ(τ)
q+2m−

ρL(M,φ)Θ(τ, v, p)

for (M,φ) ∈ Γ̃.

2.2 A quadratic space of signature (1, 2)

We now fix the setup which will be used throughout this thesis. The exposition follows
[BF06] and [Alf15].
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2 Preliminaries

2.2.1 The Grassmannian model of the upper half-plane

For a positive integer N we consider the rational quadratic space

V =

{
X =

(
x2 x1

x3 −x2

)
;x1, x2, x3 ∈ Q

}
with the quadratic form

Q(X) = Ndet(X) = N(−x2
2 − x1x3)

and the associated bilinear form

(X, Y ) = −Ntr(XY ) = −N(2x2y2 + x1y3 + x3y3).

The vectors

e1 =
1√
2N

(
0 1
−1 0

)
, e2 =

1√
2N

(
0 1
1 0

)
, e3 =

1√
2N

(
1 0
0 −1

)
form an orthogonal basis of V (R) with

(e1, e1) = 1, (e2, e2) = (e3, e3) = −1,

so V has signature (1, 2). We endow V with the orientation induced by this basis, i.e.,
a basis of V will be called positively oriented if the change of basis matrix to the basis
(e1, e2, e3) has positive determinant.

We identify the Grassmannian D of positive lines in V (R) with the complex upper
half-plane H by associating to z = x+ iy ∈ H the positive line generated by

X1(z) =
1√

2Ny

(
−x |z|2
−1 x

)
.

Note that (X1(z), X1(z)) = 1. The group SL2(R) acts as isometries on V (R) by

gX = gXg−1,

and it acts on H by fractional linear transformations. The identification above is SL2(R)-
equivariant, that is, gX1(z) = X1(gz) for g ∈ SL2(R) and z ∈ H.

2.2.2 Cusps and truncated modular surfaces

Let L be an even lattice in the rational quadratic space V of signature (1, 2) defined
above, and let Γ be a congruence subgroup of SL2(Z) that takes L to itself and acts
trivially on the discriminant group L′/L. We identify the set of isotropic lines Iso(V ) in
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2.2 A quadratic space of signature (1, 2)

V with P 1(Q) = Q ∪ {∞} via

ψ : P 1(Q)→ Iso(V ), ψ((α : β)) = span

((
αβ α2

−β2 −αβ

))
.

The map ψ is a bijection and satisfies gψ((α : β)) = ψ(g(α : β)) for g ∈ SL2(Q). Thus,
the cusps of M , i.e., the Γ-classes of P 1(Q), can be identified with the Γ-classes of Iso(V ).

If we set `∞ := ψ(∞), then `∞ is spanned by X∞ = ( 0 1
0 0 ). For ` ∈ Iso(V ) we pick

σ` ∈ SL2(Z) such that σ``∞ = `. An element of ` will be called positively oriented if it
is a positive multiple of σ`X0. We let Γ` be the stabilizer of ` in Γ = Γ/{±1}. Then

σ−1
` Γ`σ` =

{(
1 nα`
0 1

)
: n ∈ Z

}
for some α` ∈ Q>0 which we call the width of the cusp `. For each `, there is a β` ∈ Q>0

such that
(

0 β`
0 0

)
is a primitive element of `∞∩σ−1

` L. We write ε` = α`/β`. The quantities
α`, β` and ε` only depend on the Γ-class of `.

We let
M = Γ\D ∼= Γ\H

be the modular curve for Γ. We compactify M to a compact Riemann surface M by
adding a point for each cusp ` ∈ Γ\ Iso(V ), and we denote this point again by `. Write
q` = exp(2πiσ−1

` z/α`) for the chart around `. We define D1/T = {w ∈ C : |w| < 1
2πT
}

for T > 0. Note that if T is sufficiently big, then the inverse images q−1
` D1/T are disjoint

in M . We define the truncated modular curve by

MT = M\
∐

`∈Γ\ Iso(V )

q−1
` D1/T . (2.2.1)

A fundamental domain for MT can be constructed as follows. We let

F = {z ∈ H : |x| ≤ 1/2, |z| ≥ 1}

be the standard fundamental domain for SL2(Z)\H and we let

FT = {z ∈ H : |x| ≤ 1/2, |z| ≥ 1, y ≤ T}

be a truncated fundamental domain. For a ∈ N we write

Fa =
a−1⋃
j=0

(
1 j
0 1

)
F , FaT =

a−1⋃
j=0

(
1 j
0 1

)
FT .
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A fundamental domain for M = Γ\H is given by

F(Γ) =
⋃

`∈Γ\ Iso(V )

σ`Fα` ,

and a fundamental domain for MT is given by

F(Γ)T =
⋃

`∈Γ\ Iso(V )

σ`Fα`T .

2.2.3 Heegner points and geodesics

For X ∈ V with Q(X) = m ∈ Q>0 we let

zX = span(X) ∈ D

be the Heegner (or CM) point of discriminant m associated to X. We use the same
symbol for the image of zX in M . Note that the stabilizer ΓX is finite.

A vector X ∈ V of negative length Q(X) = m ∈ Q<0 defines a geodesic cX in D via

cX = {z ∈ D : z ⊥ X}.

We write c(X) = ΓX\cX for its image in M .

If |m|/N is not a square in Q, then X⊥ is non-split over Q and the stabilizer ΓX is
infinite cyclic. On the other hand, if |m|/N is a square, then X⊥ is split and ΓX is
trivial. In the first case the geodesic c(X) is closed, while in the second case c(X) is an
infinite geodesic (see also [Fun02, Lemma 3.6]).

In the case that c(X) is an infinite geodesic, X is orthogonal to two isotropic lines

`X = span(Y ) and ˜̀X = span(Ỹ ), where Y, Ỹ are positively oriented such that (X, Y, Ỹ )

is a positively oriented basis of V . Note that ˜̀X = `−X .

For h ∈ L′/L and m ∈ Q the group Γ acts on the set

Lm,h = {X ∈ L+ h : Q(X) = m},

with finitely many orbits if m 6= 0. For m > 0 the set Lm,h splits into a disjoint union
of the subsets

L+
m,h =

{
X =

(
x2 x1

x3 −x2

)
∈ Lm,h : x3 > 0

}
and

L−m,h =

{
X =

(
x2 x1

x3 −x2

)
∈ Lm,h : x3 < 0

}
.

Note that x3 = 0 is not possible if m > 0.
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2.2 A quadratic space of signature (1, 2)

2.2.4 Traces of CM values and cycle integrals

For m ∈ Q>0 and h ∈ L′/L we define the modular trace function of a Γ-invariant
function F : H→ C by

trF (m,h) =
∑

X∈Γ\Lm,h

1

|ΓX |
F (zX),

where ΓX denotes the stabilizer of X in Γ = Γ/{±1}. Similarly, we define the trace
functions

tr+
F (m,h) =

∑
X∈Γ\L+

m,h

1

|ΓX |
F (zX) and tr−F (m,h) =

∑
X∈Γ\L−m,h

1

|ΓX |
F (zX),

such that trF (m,h) = tr+
F (m,h) + tr−F (m,h).

For m ∈ Q<0 and X ∈ Lm,h we define the cycle integral of a function G : H → C,
modular of weight 2k + 2 for Γ, along the geodesic c(X) by

C(G,X) =

∫
c(X)

G(z)Qk
X(z)dz, QX(z) = N(x3z

2 − 2x2z − x1),

whenever the integral exists. Note thatQX(Mz) = j(M, z)−2QM−1X(z) where j (M, z) =
cz + d for M = ( a bc d ) ∈ SL2(R). The orientation of c(X) is defined using an explicit
parametrization as follows:

Since Q(X) = m < 0, there is some matrix g ∈ SL2(R) such that

g−1X =

√
|m|
N

(
1 0
0 −1

)
.

Recall that the stabilizer ΓX is either trivial or infinite cyclic. In the second case, the
stabilizer of g−1X in g−1Γg is generated by some matrix

(
ε 0
0 ε−1

)
with ε > 1. We can

now parametrize c(X) by g.iy with y ∈ (0,∞) if |m|/N is a square, and y ∈ (1, ε2) if
|m|/N is not a square. Note that

d

dy
g.iy = i · j(g, iy)−2,

and
QX(g.iy) = j(g, iy)−2Qg−1.X(iy) = j(g, iy)−2

(
−2
√
|m|Niy

)
.

Writing Gg = G|2k+2g = j(g, z)−2k−2G(gz) we find

C(G,X) =
(
−2
√
|m|Ni

)k
i

∫ ∞
0

Gg(iy)ykdy,
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if |m|/N is a square and similarly (i.e., with the integral from 1 to ε2) if |m|/N is not
a square. Using the transformation behaviour of G it is easy to see that the right-hand
side, and thus the implied orientation of c(X), is independent of the choice of the matrix
g. Finally, we define the trace of G for m < 0 by

trG(m,h) =
∑

X∈Γ\Lm,h

C(G,X).

2.2.5 A lattice corresponding to Γ0(N)

A particularly interesting lattice is given by

L =

{(
−b −c/N
a b

)
: a, b, c ∈ Z

}
.

Its dual lattice is

L′ =

{(
−b/2N −c/N

a b/2N

)
: a, b, c ∈ Z

}
.

We see that L′/L is isomorphic to Z/2NZ with quadratic form x 7→ −x2/4N . Thus
the level of L is 4N . By a slight abuse of notation, we will view elements h ∈ L′/L as
elements of Z/2NZ and vice versa. The group Γ = Γ0(N) acts on L and fixes the classes
of L′/L, and the modular curve Γ\D equals Y0(N) = Γ0(N)\H under the identification
given in Section 2.2.1.

The significance of the lattice L lies in the fact that the elements

X =

(
−b/2N −c/N

a b/2N

)
∈ L′

correspond to integral binary quadratic forms

QX =

(
0 N
−N 0

)
X =

(
aN b/2
b/2 c

)
.

For h ∈ Z/2NZ and D ∈ Z with D ≡ h2 mod 4N we let QN,D,h be the set of integral
binary quadratic forms

Q(x, y) = aNx2 + bxy + cy2 =
(
x y

)(aN b/2
b/2 c

)(
x
y

)
of discriminant D = b2 − 4Nac with a, b, c ∈ Z and b ≡ hmod 2N . We sometimes
write Q = [aN, b, c] for brevity. The group Γ0(N) acts on QN,D,h from the right by
QM = M tQM , with finitely many orbits if D 6= 0. The identification of X and QX is
compatible with the corresponding actions of Γ0(N), in the sense that QgX = QXg

−1
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2.3 Harmonic Maass forms

for g ∈ Γ0(N). In particular, we have a bijection

Γ0(N)\Lm,h ∼= QN,−4Nm,h/Γ0(N).

Let Q = [aN, b, c] ∈ QN,D,h. If D < 0, then the order of the stabilizer of Q in Γ0(N)
is finite, and there is an associated Heegner (or CM) point

zQ =
−b

2Na
+ i

√
|D|

2N |a|
∈ H,

which is characterized by Q(zQ, 1) = 0. Further, QN,D,h splits into a disjoint union of
the sets Q+

N,D,h and Q−N,D,h of positive definite (a > 0) and negative definite (a < 0)

quadratic forms, which correspond to the sets L+
−D/4N,h and L−−D/4N,h.

If D > 0, then Q is indefinite, and the stabilizer of Q in Γ0(N)/{±1} is trivial if D is
a square, and infinite cyclic otherwise. There is an associated geodesic in H given by

cQ = {z ∈ H : aN |z|2 + bx+ c = 0}.

These definitions of Heegner points and geodesics agree with the definitions made above,
i.e., we have cX = cQX and zX = zQX for X ∈ Lm,h.

2.3 Harmonic Maass forms

In this section we introduce the notion of harmonic (weak) Maass forms, following Bru-
inier and Funke [BF04]. In contrast to the classical definition of Maass wave forms (see
[Bum98]), which are required to be eigenforms of the invariant Laplace operator and to
be square integrable with respect to the Petersson inner product, harmonic weak Maass
forms should be harmonic with respect to the invariant Laplace operator but are allowed
to grow linearly exponentially at the cusps. Since harmonic and square integrable au-
tomorphic forms are trivial (i.e., constant in weight 0 and vanishing identically in other
weights), we will omit the word ’weak’, and understand that a harmonic Maass form
might grow linearly exponentially at the cusps.

We treat the theory of vector valued harmonic Maass forms of half-integral weight
for the Weil representation associated to an even lattice L in some detail, and mention
the necessary adjustments when working with scalar valued harmonic Maass forms of
integral weight for congruence subgroups of SL2(Z) at some places.

Throughout we let V be the rational quadratic space of signature (1, 2) from Sec-
tion 2.2. Further, we let L ⊂ V be an arbitrary even lattice (unless otherwise specified)
and Γ a congruence subgroup of SL2(Z) which acts on L and fixes the classes of L′/L.
We reserve the variable τ = u+ iv ∈ H for vector valued functions f(τ) : H→ C[L′/L],
and z = x+ iy ∈ H for scalar valued function F (z) : H→ C.
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2 Preliminaries

2.3.1 Harmonic Maass forms

Let k ∈ 1
2

+ Z be half-integral. For (M,φ) ∈ Mp2(R) and a vector valued function

f =
∑

h∈L′/L

fheh : H→ C[L′/L]

we define the half-integral weight slash operator

(f |k,ρL(M,φ))(τ) = φ(τ)−2kρL(M,φ)−1f(Mτ).

We let

∆k = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
be the weight k hyperbolic Laplace operator. It acts component-wise on vector valued
smooth functions f : H→ C[L′/L] and is invariant under the weight k slash action, that
is,

∆k(f |k,ρL(M,φ)) = (∆kf)|k,ρL(M,φ)

for (M,φ) ∈ Mp2(R).

We recall the definition of a harmonic Maass form from [BF04].

Definition 2.3.1. A harmonic Maass form of weight k ∈ 1
2

+ Z for ρL is a smooth
function f : H→ C[L′/L] with

1. ∆kf = 0,

2. f |k,ρL(M,φ) = f for every (M,φ) ∈ Γ̃,

3. f(τ) = O(eCv) as v →∞ for some constant C > 0.

We denote the space of such functions by Hk,ρL .

Scalar valued harmonic Maass forms of integral weight k ∈ Z for Γ are defined analo-
gously, but the growth condition has to be checked at each cusp of Γ. The corresponding
space is denoted by Hk(Γ).

Remark 2.3.2. The action ρL(Z)eh = ie−h of Z = S2 in the Weil representation implies
that Hk,ρL = Hk,ρ∗L

= {0} unless k ∈ 1
2

+Z, and that the components fh of f satisfy the

symmetry f−h = (−1)k+1/2fh. Further, using the explicit formula for the action of the
principal congruence subgroup Γ(M) in the Weil representation, where M denotes the
level of L for the moment, we see that the components fh of a vector valued harmonic
Maass form f are scalar valued harmonic Maass forms for Γ(M).
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2.3 Harmonic Maass forms

Every harmonic Maass form f ∈ Hk,ρL can be written as a sum f = f+ + f− of a
holomorphic and a non-holomorphic part having Fourier expansions of the form

f+(τ) =
∑

h∈L′/L

∑
n∈Q

n�−∞

c+
f (n, h)e(nτ)eh,

f−(τ) =
∑

h∈L′/L

(
c−f (0, h)v1−k +

∑
n∈Q\{0}
n�∞

c−f (n, h)Hk(4πnv)e(nτ)

)
eh,

(2.3.1)

with coefficients c±f (n, h) ∈ C, where

Hk(w) =

∫ ∞
−w

e−tt−kdt.

For w < 0 we see that Hk(w) = Γ(1−k, |w|) is an incomplete Gamma function, whereas
for w > 0 the integral in Hk(w) converges only for k < 1 and can be continued analyti-
cally in k to C in the same way as the Gamma function. Scalar valued harmonic Maass
forms of integral weight k 6= 1 for Γ have a Fourier expansion of the above shape at each
cusp of Γ, but without the sum over L′/L, of course. The finite sums

P+
f (τ) =

∑
h∈L′/L

∑
n∈Q
n≤0

c+
f (n, h)e(nτ)eh,

P−f (τ) =
∑

h∈L′/L

(
c−f (0, h)v1−k +

∑
n∈Q

0<n�∞

c−f (n, h)Hk(4πnv)e(nτ)

)
eh

are called the holomorphic and the non-holomorphic principal part of f . Note that
f − P+

f − P
−
f is rapidly decreasing as v →∞.

Remark 2.3.3. Sometimes it is convenient to use a slightly different normalization of
the Fourier expansion of the non-holomorphic part of a harmonic Maass form, given by

f−(τ) =
∑

h∈L′/L

(
c−f (0, h)v1−k +

∑
n∈Q
n<0

c−f (n, h)v1−kβk(−4πnv)e(nτ)

+
∑
n∈Q

0<n�∞

c−f (n, h)v1−kβck(−4πnv)e(nτ)

)
eh,

(2.3.2)

with coefficients c±f (n, h) ∈ C, where

βk(w) =

∫ ∞
1

e−wtt−kdt = wk−1Γ(1− k, w), βck(w) =

∫ 1

0

e−wtt−kdt.
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2 Preliminaries

In fact, all the special functions appearing in the two normalizations of the Fourier
expansions are special cases of Whittaker functions, compare the expansion given in
(2.3.12).

We let H+
k,ρL

be the subspace of harmonic Maass forms f whose non-holomorphic

principal part P−f (τ) vanishes, which means that the non-holomorphic part f− of f is

rapidly decreasing as v →∞. Further, we let M !
k,ρL

be the space of weakly holomorphic
modular forms, consisting of the forms in Hk,ρL which are holomorphic on H, i.e., f− = 0.
We let Mk,ρL be the space of holomorphic modular forms (c+

f (n, h) = 0 for n < 0) and

Sk,ρL the space of cusp forms (c+
f (n, h) = 0 for n ≤ 0). We have the inclusions

Sk,ρL ⊆Mk,ρL ⊆M !
k,ρL
⊆ H+

k,ρL
⊆ Hk,ρL .

Example 2.3.4. 1. The non-holomorphic Eisenstein series

E∗2(z) = − 3

πy
+ 1− 24

∞∑
n=1

σ1(n)e(nz)

is a scalar valued harmonic Maass form of weight 2 for SL2(Z).

2. Zagier’s non-holomorphic Eisenstein series

E∗3/2(τ) =
∞∑
d=0

H(d)e(dτ) +
1

16π
√
v

∑
n∈Z

β3/2(4πn2v)e(−n2τ),

with H(0) = − 1
12

and the Hurwitz class numbers

H(d) =
∑

Q∈Q−d/ SL2(Z)

1

|PSL2(Z)Q|
,

is a scalar valued harmonic Maass form of weight 3/2 for Γ0(4) satisfying the
Kohnen plus space condition, meaning that its Fourier expansion is supported on
indices with −d ≡ 0, 1 mod 4 (see [Zag75]). It can be viewed as a vector valued
harmonic Maass form for the Weil representation ρL of the lattice L defined in
Section 2.2.5 (see Theorem 2.3.15 below) or as a harmonic Maass Jacobi form of
weight 2 and index 1 (see Theorem 2.3.11 below).

2.3.2 Differential operators

For τ = u+ iv ∈ H we let

∂

∂τ
=

1

2

(
∂

∂u
− i ∂

∂v

)
,

∂

∂τ̄
=

1

2

(
∂

∂u
+ i

∂

∂v

)
,
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2.3 Harmonic Maass forms

be the usual Wirtinger derivatives. Recall that a function f is holomorphic if and only
if ∂

∂τ̄
f = 0. For k ∈ 1

2
Z the Maass lowering and raising operators are defined by

Lk = −2iv2 ∂

∂τ̄
, Rk = 2i

∂

∂τ
+ kv−1,

and they act component-wise on functions f : H→ C[L′/L]. These operators commute
with the slash operator, in the sense that

(Lkf)|k−2,ρL(M,φ) = Lk(f |k,ρL(M,φ)), (Rkf)|k+2,ρL(M,φ) = Rk(f |k,ρL(M,φ))

for all (M,φ) ∈ Mp2(R). In particular, if f is modular of weight k for ρL then Lkf and
Rkf are modular of weight k − 2 and k + 2 for ρL, respectively.

The lowering and raising operators are related to the weighted Laplace operator by

−∆k = Lk+2Rk + k = Rk−2Lk. (2.3.3)

This implies the commutation relations

Rk∆k = (∆k+2 − k)Rk, (2.3.4)

∆k−2Lk = Lk(∆k + 2− k). (2.3.5)

We also define iterated versions of the lowering and raising operators by

Lnk = Lk−2(n−1) ◦ · · · ◦ Lk−2 ◦ Lk, Rn
k = Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk.

For n = 0 we set L0
k = R0

k = id. Using (2.3.4) and (2.3.5) inductively one can find many
interesting commutation relations between the iterated lowering and raising operators
and the weighted Laplacian. We collect some identities for later use.

Lemma 2.3.5. We have the following relations.

1. For k ∈ Z≥0 and ` = 0, . . . , k we have

∆−2`R
k−`
−2k = Rk−`

−2k (∆−2` − (k − `)(k + `+ 1)) .

2. If k is even then

∆1/2−kL
k/2
1/2 = L

k/2
1/2

(
∆1/2 +

k

4
(k + 1)

)
,

∆3/2+kR
k/2
3/2 = R

k/2
3/2

(
∆3/2 +

k

4
(k + 1)

)
,
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3. If k is odd we have

∆1/2−kL
(k+1)/2
3/2 = L

(k+1)/2
3/2

(
∆3/2 +

k

4
(k + 1)

)
,

∆3/2+kR
(k+1)/2
1/2 = R

(k+1)/2
1/2

(
∆1/2 +

k

4
(k + 1)

)
.

An important tool in the theory of harmonic Maass forms is the antilinear differential
operator

ξkf = vk−2Lkf(τ) = R−kv
kf(τ) = 2ivk

∂

∂τ̄
f(τ).

It defines a surjective map
ξk : Hk,ρL →M !

2−k,ρ∗L
.

Note that a harmonic Maass form f lies in H+
k,ρL

if and only if ξkf is a cusp form.

There is another important differential operator which acts on harmonic Maass forms
of integral weight k ∈ Z with k ≤ 1. In [BOR08] the authors introduced the linear
differential operator

D1−k =

(
1

2πi

∂

∂z

)1−k

which defines a map
D1−k : Hk(Γ)→M !

2−k(Γ).

It acts on the Fourier expansion of F by

D1−kF = D1−kF+ =
∑

n�−∞

c+
F (n)n1−ke(nz).

Bol’s identity states that D1−k is related to the iterated raising operator by

D1−k =
1

(−4π)1−kR
1−k
k .

By applying the Hecke bound to the cusp form D1−kF we immediately obtain that the
coefficients c+

F (n) of a harmonic Maass form F grow polynomially in n if the holomorphic
principal parts of F vanish at all cusps. The analogous result in the half-integral weight
setting is quite difficult to prove, and involves the explicit construction of a basis of the
space of harmonic weak Maass forms and a detailed study of their Fourier coefficients,
see Section 2.3.8 below. Unfortunately, this differential operator does not have a half-
integral weight counterpart.
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2.3 Harmonic Maass forms

2.3.3 The regularized inner product and integral formulas

Let k ∈ 1
2

+ Z. The regularized inner product of f ∈M !
k,ρL

and g ∈ Sk,ρL is defined by

(f, g)reg = lim
T→∞

∫
FT
〈f(τ), g(τ)〉vk du dv

v2
, (2.3.6)

where
FT = {τ = u+ iv ∈ H : |u| ≤ 1

2
, |τ | ≥ 1, v ≤ T}

is a truncated fundamental domain for the action of SL2(Z) on H. For k = 1/2 the
regularized inner product also converges for g ∈ M1/2,ρL . If the integral exists without
regularization, e.g., if both f and g are cusp forms, then (f, g)reg agrees with the usual
Petersson inner product (f, g).

An application of Stokes’ theorem (compare Proposition 3.5 in [BF06]) shows that
for f ∈ M !

k,ρL
with coefficients cf (n, h), and g̃ ∈ H2−k,ρ∗L with holomorphic coefficients

c+
g̃ (n, h) and ξ2−kg̃ = g ∈ Sk,ρL (or g ∈M1/2,ρL if k = 1/2), the regularized inner product

can be evaluated as

(f, g)reg = (f, ξ2−kg̃)reg =
∑

h∈L′/L

∑
n∈Q

cf (n, h)c+
g̃ (−n, h). (2.3.7)

The regularized inner product of scalar valued forms of integral weight for Γ is defined
analogously, and the above evaluation works in the same way, but now the Fourier
coefficients at all cusps of Γ contribute on the right-hand side.

The above formula can be employed to show the following useful lemma.

Lemma 2.3.6. Let f be a harmonic Maass form of weight 2 − k for ρL or ρ∗L whose
principal part vanishes and which maps to a cusp form under ξ2−k (or a holomorphic
modular form if k = 1/2). Then f is a cusp form.

Proof. Suppose that g = ξ2−kf is a cusp form. By (2.3.7) we see that (g, g) = (g, g)reg =
(g, ξ2−kf)reg = 0, so g = 0. This means that f is holomorphic, hence a cusp form. For
k = 1/2 the inner product (g, g) also converges if g ∈ M1/2,ρL , so the same argument
works in this case.

Now let k ∈ Z. For the computation of the Fourier expansion of the theta lifts studied
in this work we will need integral formulas which allow us to move differential operators
from one function in the integral to another. The formulas are simple consequences of
Stokes’ theorem, which states that for a smooth (n− 1)-form ω on some n-dimensional
compact oriented smooth manifold X with boundary ∂X we have∫

X

dω =

∫
∂X

ω,
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where d denotes the usual exterior derivative. Let

dµ(z) =
dx ∧ dy
y2

=
i

2
· dz ∧ dz̄

y2

be the SL2(R)-invariant measure on H.

Lemma 2.3.7. Let k ∈ Z, and let F,G : H → C be smooth functions which transform
like F |2−kM = F and G|kM = G for all M ∈ Γ. Then for T > 1 we have∫

MT

ξ2−kF (z)G(z)ykdµ(z) +

∫
MT

F (z)ξkG(z)y2−kdµ(z) = −
∫
∂MT

F (z)G(z)dz.

Proof. Writing d = ∂ + ∂̄ with ∂F = ∂
∂z
F (z)dz and ∂̄F = ∂

∂z̄
F (z)dz̄, and

d
(
F (z)G(z)dz

)
= ∂̄

(
F (z)G(z)dz

)
=

(
∂

∂z̄

(
F (z)G(z)

))
dz̄ ∧ dz

= −
(
ξ2−kF (z)G(z)yk + F (z)ξkG(z)y2−k

)
dµ(z),

the formula follows from Stokes’ theorem applied to the smooth 1-form F (z)G(z)dz on
MT .

Remark 2.3.8. Let F and G be as in the lemma above. For each cusp ` ∈ Γ\ Iso(V ) of
Γ, choose a matrix σ` ∈ SL2(Z) with σ`∞ = ` and let α` denote the width of `. Write
F` = F |2−kσ` and G` = G|kσ` for brevity. The integral over the boundary can then be
written as ∫

∂MT

F (z)G(z)dz =
∑

`∈Γ\ Iso(V )

∫
∂Fα`T

F`(z)G`(z)dz

= −
∑

`∈Γ\ Iso(V )

∫ α`+iT

iT

F`(z)G`(z)dz,

since in the integral over ∂Fα`T all terms but the horizontal boundary piece cancel out
due to the modularity of the integrand. The minus sign comes from the fact that we
integrate over ∂Fα`T in counter-clockwise direction.

Using ∆k = −ξ2−kξk we obtain the following result.

Lemma 2.3.9. Let F,G : H→ C be smooth functions which transform like F |kM = F
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2.3 Harmonic Maass forms

and G|kM = G for all M ∈ Γ. Then for T > 1 we have∫
MT

∆kF (z)G(z)ykdµ(z)−
∫
MT

F (z)∆kG(z)ykdµ(z)

=

∫
∂MT

(
ξkF (z)

)
G(z)dz −

∫
∂MT

F (z)
(
ξkG(z)

)
dz.

2.3.4 Jacobi forms

We now define holomorphic and skew-holomorphic Jacobi forms of integral weight and
explain their connection to vector valued modular forms of half-integral weight. The
standard reference on Jacobi forms is the book [EZ85] by Eichler and Zagier.

Throughout this section we let L be the lattice related to Γ0(N) which was defined in
Section 2.2.5. Equivalently, we could take the one dimensional negative definite lattice
Z with the quadratic form n 7→ −Nn2 instead of L, since its discriminant group is also
isomorphic to Z/2NZ with the finite quadratic form x 7→ −x2/4N .

The group SL2(R) n Z2 (with elements of Z2 viewed as row vectors) with group law

[M,X] · [M ′, X ′] = [MM ′, XM ′ +X ′]

acts on holomorphic functions φ : H× C→ C by

φ

∣∣∣∣
k,N

[(
a b
c d

)
, [λ, µ]

]
(τ, z) (2.3.8)

= (cτ + d)−keN
(
−c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz

)
φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,

where e(x) = e2πix and eN(x) = e2πiNx for x ∈ C, N ∈ Z.

Definition 2.3.10. A Jacobi form of weight k ∈ Z and index N is a holomorphic
function φ : H× C→ C with

1. φ|k,N [M,X] = φ for every [M,X] ∈ SL2(Z) n Z2.

2. The function φ(τ, z) has a Fourier expansion of the form

φ(τ, z) =
∑

D,r∈Z,D≤0
r2≡D(4N)

cφ(D, r)q
r2−D

4N ζr, (q = e(τ), ζ = e(z)),

with coefficients cφ(D, r) ∈ C.

If cφ(D, r) = 0 whenever D = 0, we call φ a Jacobi cusp form. The corresponding spaces
of Jacobi forms are denoted by Jk,N and Jcusp

k,N .
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2 Preliminaries

The invariance property

φ(τ, z + λτ + µ) = φ(τ, z), [λ, µ] ∈ Z2,

of a Jacobi form implies that for fixed D the coefficient cφ(D, r) only depends on the
residue class of rmod 2N . Thus we can write

φ(τ, z) =
∑
r(2N)

fr(τ)ϑr(τ, z),

where
fr(τ) =

∑
D∈Z,D≤0
D≡r2(4N)

cφ(D, r)q−
D
4N , ϑr(τ, z) =

∑
m∈Z

m≡r(2N)

q
m
4N ζm.

This is the so-called theta decomposition of the Jacobi form φ. The transformation laws
of φ and of the theta functions ϑr(τ, z), which can be derived using Poisson summation,
together imply a certain transformation behaviour of the functions fr(τ). More precisely,
we obtain:

Theorem 2.3.11 ([EZ85], Theorem 5.1). The map

φ 7→
∑
r(2N)

fr(τ)er

yields isomorphisms

Jk,N ∼= Mk−1/2,ρL and Jcusp
k,N
∼= Sk−1/2,ρL .

Next, we will see that the space Mk+1/2,ρ∗L
of holomorphic modular forms for the dual

Weil representation is isomorphic to the space J∗k,N of skew-holomorphic Jacobi forms,
whose definition we now recall from [Sko90]. We define a modified slash operation |∗k,N
of SL2(Z)nZ2 on functions φ : H×C→ C by replacing the factor (cτ + d)−k in (2.3.8)
by

|cτ + d|−1(cτ̄ + d)−k+1.

Definition 2.3.12. A skew-holomorphic Jacobi form of weight k ∈ Z and index N is a
smooth function φ : H× C→ C with

1. φ|∗k,N [M,X] = φ for every [M,X] ∈ SL2(Z) n Z2.

2. The function φ(τ, z) has a Fourier expansion of the form

φ(τ, z) =
∑

D,r∈Z,D≥0
D≡r2(4N)

cφ(D, r)e

(
D

2N
iv

)
q
r2−D

4N ζr, (q = e(τ), ζ = e(z)),
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with coefficients cφ(D, r) ∈ C.

If cφ(D, r) = 0 whenever D = 0, we call φ a skew-holomorphic Jacobi cusp form. The
corresponding spaces of skew-holomorphic Jacobi forms are denoted by J∗k,N and J∗,cusp

k,N .

Similarly as above, each φ ∈ J∗k,N has a theta decomposition

φ(τ, z) =
∑
r(2N)

fr(τ)ϑr(τ, z)

where ϑr(τ, z) is the same theta function as above, and

fr(τ) =
∑

D∈Z,D≥0
D≡r2(4N)

cφ(D, r)e (−Dτ̄) .

We obtain

Theorem 2.3.13 ([EZ85], Theorem 5.1). The map

φ 7→
∑
r(2N)

fr(τ)er

yields isomorphisms

J∗k,N
∼= Mk−1/2,ρ∗L

and J∗,cusp
k,N

∼= Sk−1/2,ρ∗L
.

This connection enables us to carry over results from the theory of Jacobi forms to
vector valued modular forms for the Weil representation.

Theorem 2.3.14 ([EZ85], Theorem 5.7; [SZ88], p. 130). We have

M1/2,ρL
∼= J1,N = {0}

and

dim(M1/2,ρ∗L
) = dim(J∗1,N) =

1

2
(σ0(N) + δ(N = �)),

for all N , where σ0(N) =
∑

d|N 1 is the number of positive divisors of N , and δ(N = �)
equals 1 if N is a square, and 0 otherwise.

We remark that in [SZ88], p. 130, the authors also construct a basis of J∗1,N , which con-
sists of certain theta series. Analogously, we will construct a basis of M1/2,ρ∗L

consisting
of unary theta series in Lemma 2.3.17.

Theorem 2.3.15 ([EZ85], Theorem 5.6). Let k ∈ 1
2

+ Z. Then the map∑
h∈L′/L

fh(τ)eh 7→
∑

h∈L′/L

fh(4Nτ),
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sends a holomorphic vector valued modular form of weight k for ρL (resp. ρ∗L) to a scalar
valued holomorphic modular form of weight k for Γ0(4N) whose n-th Fourier coefficient
vanishes unless −n (resp. n) is a square mod 4N . If N = 1, or if N = p is a prime
and k + 1

2
is even (resp. odd), this map is an isomorphism between the two spaces of

holomorphic modular forms.

As a special case, let N = 1 and let M+
k (Γ0(4)) be the space of scalar valued holo-

morphic modular forms of weight k for Γ0(4) satisfying the Kohnen plus space condition

cf (n) = 0 unless (−1)k−
1
2n ≡ 0, 1 mod 4. Then the map

f0(τ)e0 + f1(τ)e1 7→ f0(4τ) + f1(4τ)

defines isomorphisms Mk,ρL
∼= M+

k (Γ0(4)) if k + 1
2

is even, and Mk,ρ∗L
∼= M+

k (Γ0(4)) if
k + 1

2
is odd.

2.3.5 Atkin-Lehner and level raising operators

Let k ∈ 1
2

+ Z. The orthogonal group O(L′/L) of the finite quadratic module L′/L acts
on vector valued modular forms

f(τ) =
∑

h∈L′/L

fh(τ)eh

for ρL or ρ∗L by

fσ(τ) =
∑

h∈L′/L

fh(τ)eσ(h),

where σ ∈ O(L′/L). Now let L be the lattice related to Γ0(N) from Section 2.2.5, such
that L′/L ∼= Z/2NZ, and vector valued modular forms can be identified with Jacobi
forms. Then the elements of O(L′/L) correspond to the Atkin-Lehner involutions from
the theory of Jacobi forms, see [EZ85], Theorem 5.2. These operators in turn correspond
to the exact divisors c || N (i.e., c | N and (c,N/c) = 1). The automorphism σc
corresponding to c is defined by the equations

σc(h) ≡ −h (2c) and σc(h) ≡ h (2N/c) (2.3.9)

for h ∈ Z/2NZ. Note that the Atkin-Lehner involutions only permute the components
of a vector valued modular form.

For each positive integer d there is an operator Ud which maps Jacobi forms of index
N to forms of index Nd2, see [EZ85], Section 4. Using the isomorphism Jk,N ∼= Mk−1/2,ρL

it yields an operator which maps modular forms for the Weil representation of the lattice
L of level 4N to forms for the lattice L of level 4Nd2. Its action on the Fourier expansion
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of a holomorphic modular form

f(τ) =
∑
h(2N)

∑
n∈Q

cf (n, h)e (nτ) eh

for ρL is given by

(f |Ud)(τ) =
∑

h(2Nd2)
h≡0(d)

∑
n∈Q

cf (n/d
2, h/d)e (nτ) eh. (2.3.10)

In particular, Ud only distributes the components of f in a certain way, but does not
change the set of Fourier coefficients of f .

The Atkin-Lehner and Ud operators also act on harmonic Maass forms by the same
formulas as above, and they commute with the ξ-operator.

We now introduce Atkin-Lehner operators on scalar valued modular forms. Let k ∈ Z,
let N be a positive integer, and let Γ = Γ0(N). For each exact divisor d || N (meaning
d | N and (d,N/d) = 1) choose a matrix

WN
d =

(
dα β
Nγ dδ

)
,

with α, β, γ, δ ∈ Z such that WN
d has determinant d. The operator

f 7→ f |kWN
d

is independent of the choice of the parameters and defines an involution on Hk(Γ0(N)),
which is called the Atkin-Lehner involution corresponding to d. For two exact divisors
d, d′ of N we have

F |kWN
d |WN

d′ = F |kWN
d∗d′ ,

where d ∗ d′ = dd′

(d,d′)2 is again an exact divisor of N . In particular, the Aktin-Lehner
involutions form a finite abelian group which is isomorphic to the set of all exact divisors
with the ∗ multiplication.

2.3.6 Unary theta functions

Let L be the lattice related to Γ0(N) from Section 2.2.5. We define the unary theta
functions

θ1/2,N(τ) =
∑
h(2N)

∑
b∈Z

b≡h(2N)

e(b2τ/4N)eh and θ3/2,N(τ) =
∑
h(2N)

∑
b∈Z

b≡h(2N)

be(b2τ/4N)eh.

(2.3.11)
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They are holomorphic vector valued modular forms of weight 1/2 and 3/2 for ρ∗L, which
follows from Theorem 2.1.1 by noting that they are the theta functions associated to
the 1-dimensional positive definite lattice Z with the quadratic form x 7→ Nx2 and the
polynomials 1 and x. By Theorem 2.3.13 one can view θ1/2 and θ3/2 as skew-holomorphic
Jacobi forms of weight 1 and 2.

Definition 2.3.16. The space of unary theta functions of weight 1/2 for ρ∗L is defined
as ∑

d2|N

∑
c|| N
d2

C θσc1/2,N/d2|Ud .

The space of unary theta functions of weight 3/2 for ρ∗L is defined analogously.

We defined the spaces of unary theta functions only for the dual Weil representation
ρ∗L since there are no similar theta functions for ρL.

We now show that the space of unary theta functions of weight 1/2 agrees with the
whole space M1/2,ρ∗L

.

Lemma 2.3.17. Let D(N) be the set of all positive divisors of N modulo the equivalence
relation c ∼ N/c. Then the theta functions

θ
σc/(c,N/c)
1/2,N/(c,N/c)2|U(c,N/c), c ∈ D(N),

form a basis of M1/2,ρ∗L
.

Proof. Using the dimension formula for J∗1,N
∼= M1/2,ρ∗L

from Theorem 2.3.14, we obtain
that the number of given theta functions agrees with the dimension of M1/2,ρ∗L

. On

the other hand, by looking at the constant terms and the coefficients at qd
2/4Ned for

d ∈ D(N), we see that the given functions are linearly independent.

2.3.7 Maass Poincaré series

We construct some explicit examples of vector valued harmonic Maass forms using Maass
Poincaré series, with special focus on the case k = 1/2. In the next section, we will
estimate the growth of the coefficients of such series, yielding an estimate for the growth
of the coefficients of arbitrary harmonic Maass forms.

We let Mν,µ(z) and Wν,µ(z) be the usual Whittaker functions as defined in [AS64],
Chapter 13. For k ∈ 1

2
Z, n ∈ Q, v > 0 and s ∈ C we set

Mn,k(v, s) =

{
Γ(2s)−1(4π|n|v)−k/2Msgn(n)k/2,s−1/2(4π|n|v), n 6= 0,

vs−k/2, n = 0,
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and

Wn,k(v, s) =

{
Γ(s+ sgn(n)k/2)−1|n|k/2−1(4πv)−k/2Wsgn(n)k/2,s−1/2(4π|n|v), n 6= 0,

(4π)1−k

(2s−1)Γ(s−k/2)Γ(s+k/2)
v1−s−k/2, n = 0.

The normalization is taken from [JKK13] and is chosen such that the Fourier expansion
of the Maass Poincaré series studied below takes a simpler form. We will be particularly
interested in the point s = 1− k/2 for k ≤ 1/2. We abbreviate

Mn,k(v) =Mn,k(v, 1− k/2), Wn,k(v) =Wn,k(v, 1− k/2).

Then we have

Mn,k(v) = e−2πny


(−1)k[Γ(1− k)−1Γ(1− k,−4πnv)− 1], n > 0,

1− Γ(1− k)−1Γ(1− k,−4πnv), n < 0,

v1−k, n = 0,

and

Wn,k(v) = e−2πny


nk−1, n > 0,

|n|k−1Γ(1− k)−1Γ(1− k,−4πnv), n < 0,

Γ(2− k)−1(4π)1−k, n = 0.

The Fourier expansion of a harmonic Maass form f ∈ Hk,ρL can also be written in the
form

f(τ) =
∑

h∈L′/L

∑
n∈Q

af (n, h)Mn,k(v)e(nu)eh +
∑

h∈L′/L

∑
n∈Q

bf (n, h)Wn,k(v)e(nu)eh (2.3.12)

with coefficients a(n, h), b(n, h) ∈ C. The translation between the normalizations in
(2.3.12) and (2.3.1) is simple. Note that the condition f(τ) = O(eCv) as v → ∞ and
the asymptotic behaviour of the Whittaker functions imply that the first sum over n is
finite. This normalization of the Fourier expansion emphasizes the splitting of f into an
increasing and a decreasing part (as v →∞), and is more convenient for the construction
of Maass Poincaré series.

Let k ∈ 1/2 + Z with k ≤ 1/2. For h ∈ L′/L and m ∈ Q we consider the non-
holomorphic Maass Poincaré series

Pk,m,h(τ, s) =
1

2

∑
(M,φ)∈Γ̃∞\Γ̃

[Mm,k(v, s)e(mu)eh] |k,ρL(M,φ).

It converges absolutely and locally uniformly for Re(s) > 1, and it has weight k with
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respect to ρL. Maass-Poincaré series for the dual Weil representation ρ∗L are defined
analogously, and everything we say in this section remains true for these series as well.
The Poincaré series satisfies the Laplace equation

∆kPk,m,h(τ, s) = (s− k/2)(1− k/2− s)Pk,m,h(τ, s), (2.3.13)

which follows by a direct calculation from the defining differential equation of the M -
Whittaker function. This implies that Pk,m,h(τ, s) is real analytic in τ ∈ H. Note that
for k ≤ −1/2 the Poincaré series converges at s = 1− k/2, giving a harmonic function.

The Fourier expansion of Pk,m,h(τ, s) has been computed in several recent works, for
example in [Bru02, Theorem 1.9], [DIT11, Proposition 2] and [JKK13, Theorem 3.2].
The result is as follows.

Proposition 2.3.18. For Re(s) > 1 the Poincaré series Pk,m,h(τ, s) has the Fourier
expansion

Pk,m,h(τ, s) =Mm,k(v, s)e(mu)(eh + e−h) +
∑

h′∈L′/L

∑
n∈Q

bk,m,h(n, h
′, s)Wn,k(v, s)e(nu)eh′

where the Fourier coefficients bk,m,h(n, h
′, s) are given by

2π
∑
c 6=0

Hc(h,m, h
′, n)×


|mn|(1−k)/2J2s−1

(
4π
√
|mn|/|c|

)
, mn > 0,

|mn|(1−k)/2I2s−1

(
4π
√
|mn|/|c|

)
, mn < 0,

2k−1πs+k/2−1|m+ n|s−k/2|c|1−2s, mn = 0,m+ n 6= 0,

22k−2πk−1Γ(2s)|2c|1−2s, m = n = 0.

Here

Hc(h,m, h
′, n) =

e(− sgn(c)k/4)

|c|
∑
d(c)∗

( a bc d )∈SL2(Z)

〈ρ−1
L ((( a bc d ) ,

√
cτ + d))eh, eh′〉e

(
ma+ nd

c

)

is a Kloosterman sum, and I2s−1 and J2s−1 are the usual Bessel functions. The Fourier
expansion converges for Re(s) > 1/2.

In the following, we restrict to the case k = 1/2 for simplicity, but the results remain
true for k ≤ −1/2, with much simpler proofs since Pk,m,h(τ, 1− k/2) converges in these
cases.

By the theory of the resolvent kernel, the Poincaré series P1/2,m,h(τ, s) has a meromor-
phic continuation to Re(s) > 1/2 which is analytic up to finitely many possible simple
poles in the real segment (1/2, 1). These poles occur at points of the discrete spectrum of
∆1/2, so the corresponding residues are square-integrable with respect to the Petersson
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inner product. We define the function

P sesqui
1/2,m,h(τ) = CTs=3/4

(
P1/2,m,h(τ, s)

)
as the constant term at s = 3/4 in the Laurent expansion of the meromorphic continu-
ation of P1/2,m,h(τ, s), and we let

R1/2,m,h(τ) = Ress=3/4

(
P1/2,m,h(τ, s)

)
denote the residue of the Poincaré series at s = 3/4.

Proposition 2.3.19. The function P sesqui
1/2,m,h(τ) is modular of weight 1/2 for ρL and

satisfies the differential equation

∆1/2P
sesqui
1/2,m,h(τ) = −1

2
R1/2,m,h(τ) ∈M1/2,ρL . (2.3.14)

It has the Fourier expansion

P sesqui
1/2,m,h(τ) =Mm,1/2(v)e(mu)(eh + e−h)

+
∑

h′∈L′/L

∑
n∈Q

CTs=3/4

(
b1/2,m,h(n, h

′, s)
)
Wn,1/2(v, 3/4)e(nu)eh′

+
∑

h′∈L′/L

∑
n≥0

Ress=3/4

(
b1/2,m,h(n, h

′, s)
) (

d
ds
Wn,1/2(v, s)

)
|s=3/4e(nu)eh′ .

In particular, it is a sesquiharmonic Maass form in the sense of [BDR13].

Proof. The Laplace equation (2.3.13) shows that R1/2,m,h(τ) is harmonic and that the

function P sesqui
1/2,m,h(τ) satisfies the differential equation (2.3.14). The fact that R1/2,m,h(τ)

is also square-integrable implies that it is actually a holomorphic modular form of
weight 1/2 for ρL. This also implies that the Fourier coefficients of negative index
of P1/2,m,h(τ, s) are holomorphic at s = 3/4. Now we obtain the stated expansion from
Proposition 2.3.18.

We compute the action of ξ1/2 on the non-harmonic part in the third line of the
expansion above.

Lemma 2.3.20. For n ≥ 0 we have

ξ1/2

((
d

ds
Wn,1/2(v, s)

) ∣∣∣∣
s=3/4

e(nu)

)
=

{
−2v−1/2, n = 0,

−
√
π Γ(−1/2, 4πnv)e(−nτ), n > 0.
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Further, for n > 0 we have(
d

ds
Wn,1/2(v, s)

) ∣∣∣∣
s=3/4

= O
(
n−1/2| log(nv)|e−2πnv

)
as v →∞ or v → 0, where the implied constant does not depend on n.

Proof. For n = 0 a direct calculation gives

ξ1/2

(
d

ds
W0,1/2(v, s)

) ∣∣∣∣
s=3/4

= 2iv1/2 ∂

∂τ
(−2 log(v)− 4Γ′(1) + 4 log(2)) = −2v−1/2.

For n > 0 we first compute the derivative in τ ,

ξ1/2

(
Wn,1/2(v, s)e(nu)

)
= 2iv1/2e(−nτ̄)

∂

∂τ

(
Wn,1/2(v, s)e2πnv

)
=

n−3/4v1/2

Γ(s+ 1/4)
e(−nτ̄)

∂

∂v

(
(4πv)−1/4e2πnvW1/4,s−1/2(4πnv)

)
.

Using the integral representation

Wκ,µ(v) =
vµ+1/2e−v/2

Γ(1/2 + µ− κ)

∫ ∞
0

e−vttµ−1/2−κ(t+ 1)µ−1/2+κdt,

valid for Re(µ−1/2−κ) > −1 by [AS64, (13.1.33), (13.2.5)], and the recurrence relation
[AS64, (13.4.30)] for the W -Whittaker functions, a short calculation yields

∂

∂v

(
v−1/4ev/2W1/4,s−1/2(v)

)
= −(s− 1/4)(s− 3/4)v−5/4ev/2W−3/4,s−1/2(v).

Now we take the derivative with respect to s and plug in s = 3/4. Using the identity

W−3/4,1/4(v) = ev/2v3/4Γ(−1/2, v)

and taking everything together, we obtain the stated formula.
The growth estimates can easily be shown using the integral representation for the

W -Whittaker function given above.

Theorem 2.3.21. Let f ∈ H1/2,ρL with a Fourier expansion as in (2.3.12). Then we
have

f − 1

2

∑
h∈L′/L

∑
m∈Q

af (m,h)P sesqui
1/2,m,h ∈M1/2,ρL , (2.3.15)

i.e., every harmonic Maass form in H1/2,ρL can be uniquely written as a linear com-

bination of the sesquiharmonic Poincaré series P sesqui
1/2,m,h(τ) and a holomorphic modular
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form.

Proof. Let g be the difference in (2.3.15). Applying ξ1/2 to the Fourier expansion of

P sesqui
1/2,m,h, and taking into account Lemma 2.3.20, we see that g̃ = ξ1/2g is a harmonic

Maass form of weight 3/2 for ρ∗L whose principal part is given by some constant in
C[L′/L] times v−1/2, and whose coefficients bg̃(0, h

′) vanish for all h′ ∈ L′/L. Further,
ξ3/2g̃ = −∆1/2g is a linear combination of the residues R1/2,m,h, and hence a holomorphic
modular form. By (2.3.7) the Petersson norm of ξ3/2g̃ can be evaluated as

(ξ3/2g̃, ξ3/2g̃) =
∑

h′∈L′/L

(
2

π
bg̃(0, h

′)bξ3/2g̃(0, h
′) +

∑
n<0

|n|−1/2ag̃(n, h
′)bξ3/2g̃(−n, h

′)

)
.

Note that the Petersson norm of a holomorphic modular form of weight 1/2 converges
even if the form is non-cuspidal. The right-hand side vanishes by what we have said
above. This implies ξ3/2g̃ = 0, so g̃ is holomorphic and g is actually a harmonic Maass
form. From the Fourier expansion of g we see that ξ1/2g is a cusp form. Since the
principal part of g vanishes by construction, we obtain (ξ1/2g, ξ1/2g) = 0 by the same
argument as above. Thus ξ1/2g = 0, which means that g is holomorphic.

2.3.8 Estimates for the Fourier coefficients of harmonic Maass
forms

As an application we show that the W-Whittaker coefficients bf (n, h) of positive index
n > 0 of a harmonic Maass form f ∈ H1/2,ρL are of polynomial growth if the M-
Whittaker coefficients af (n, h) of negative index n < 0 vanish.

Theorem 2.3.22. Let f ∈ H1/2,ρL be a harmonic Maass form of weight 1/2 for ρL.

(a) We have

bf (n, h) = O

(
eC
√
|n|
)

as n→ ±∞,

for some constant C > 0 which is independent of n.

(b) If af (n, h) = 0 for all n ≥ 0 and h ∈ L′/L, then

bf (n, h) = O
(
|n|3/4

)
as n→ −∞.

(c) If af (n, h) = 0 for all n < 0 and h ∈ L′/L, then

bf (n, h) = O
(
n3/2

)
as n→∞.
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Remark 2.3.23. 1. The estimate O(n3/2) in part (c) is probably not optimal, but
much better than the exponential growth obtain from the estimate in (a). The
proof of (c) presented below is very complicated compared to the proofs of (a) and
(b), so it would be desirable to find a simpler proof of (c).

2. In terms of the normalization (2.3.1) of the Fourier expansion of a harmonic Maass
form, the result says that the coefficients c+

f (n, h) of the holomorphic part of f grow

polynomially in n if the holomorphic principal part P+
f vanishes.

Proof of Theorem 2.3.22. The first statement is Lemma 3.4 in [BF04], and can be proven
by the same arguments as in the proof of the usual Hecke bound for holomorphic modular
forms. The second claim follows from the Hecke bound applied to the cusp form ξ1/2f .

We now prove the third bound. Theorem 2.3.21 implies that the non-harmonic parts
of the functions P sesqui

1/2,m,h cancel out in the linear combination (2.3.15). This, together

with the assumption af (n, h
′) = 0 for n < 0 and h′ ∈ L′/L, implies that bf (n, h

′) can
be written as a linear combination of the constant terms CTs=3/4(b1/2,m,h(n, h

′, s)) with
m ≥ 0, plus the coefficient cg(n, h

′) of a holomorphic modular form

g(τ) =
∑

h′∈L′/L

∑
n≥0

cg(n, h
′)n−1/2e(nτ)eh′ ∈M1/2,ρL .

Since the latter space of holomorphic modular forms is either trivial or spanned by
unary theta series, we have cg(n, h

′) = O(n1/2) as n → ∞. We are left to estimate the
coefficients of the Poincaré series. The basic idea is that for m > 0 the decay of the
J-Bessel function appearing in these coefficients results in polynomial growth, whereas
the growth of the I-Bessel function would yield exponential growth. The proof is quite
technical due to the poor convergence of the series defining the Fourier coefficients.

If m = 0, then the Fourier expansion of P sesqui
1/2,0,h given in Proposition 2.3.19 and the

growth of the appearing Whittaker functions (see also Lemma 2.3.20) show that

P sesqui
1/2,0,h(τ) = O(v1/2), as v →∞,

uniformly in u. Using the modularity of the Poincaré series, this implies

P sesqui
1/2,0,h(τ) = O(v−1), as v → 0,

uniformly in u. For n > 0 the n-th Fourier coefficient of the Poincaré series is given by∫ 1

0

〈P sesqui
1/2,0,h(τ), e(nu)eh′〉du = CTs=3/4

(
b1/2,0,h(n, h

′, s)
)
n−1/2e−2πnv

+ Ress=3/4

(
b1/2,0,h(n, h

′, s)
) (

d
ds
Wn,1/2(v, s)

)
|s=3/4.

For 0 < v < 1 the Fourier integral can be estimated by Cv−1e2πnv for some constant C
which is independent of n and v. Further, we have Ress=3/4

(
b1/2,0,h(n, h

′, s)
)

= O(n1/2)
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as n→∞, since the residues appear as the coefficients of the holomorphic modular form
∆1/2P

sesqui
1/2,0,h. Finally, plugging in v = 1/n and using the estimate for the derivative of

the W-Whittaker function from Lemma 2.3.20, we obtain

CTs=3/4

(
b1/2,0,h(n, h

′, s)
)

= O(n3/2)

as n→∞.

Now let m > 0 and n > 0. By splitting the sum over c in the coefficient b1/2,m,h(n, h
′, s)

at n and using that

J2s−1(y) =
(y

2

)2s−1
∞∑
k=0

(−1)k

k! Γ(2s+ k)

(y
2

)2k

and J1/2(y) =

√
2

πy
sin(y)

for y > 0 (see [EMOT54, 8.440, 8.464]) it is easy to see that

CTs=3/4

(
b1/2,m,h(n, h

′, s)
)

(2.3.16)

= CTs=3/4

(
(2π)2s(mn)s−1/4

Γ(2s)

∑
c 6=0

Hc(h,m, h
′, n)|c|1−2s

)
+O(n3/2).

The function
Z(h,m, h′, n; s) =

∑
c 6=0

Hc(h,m, h
′, n)|c|1−2s

appearing above is called a Kloosterman zeta function. Estimates for (scalar valued
analogs of) these zeta functions with respect to m and n have been treated by Goldfeld
and Sarnak [GS83], Hejhal [Hej83] and Pribitkin [Pri00]. We sketch the arguments of
[Pri00] that lead to an estimate of Z(h,m, h′, n; s) as n→∞. The main tool is Selberg’s
Poincaré series

Pm,h(τ, s) =
1

2

∑
(M,φ)∈Γ̃∞\Γ̃

[vse(mτ)eh]|1/2,ρL (M,φ),

which converges absolutely and locally uniformly for Re(s) > 3/4, and is modular of
weight 1/2 for ρL. Using the spectral theory of automorphic forms, Selberg [Sel65] de-
rived the meromorphic continuation of the Poincaré series to all of C. The meromorphic
continuation of the Kloosterman zeta functions then follows from the fact that they ap-
pear in the Fourier expansion of Pm,h(τ, s). The Fourier expansion in the vector valued
setting can be found in [vPSV17], Proposition 3.1.

For n > m > 0, a calculation analogous to the one in [Pri00], Lemma 1, gives the
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equation

Z(h,m, h′, n; 1/4 + s) (2.3.17)

= 2s/2+7/2πn2 Γ(s+ 1/2)Γ(s+ 2)

Γ(2s+ 3/2)

((
Pm,h(τ, s),Pn,h′(τ, s̄+ 2)

)
+Rm,n(s)

)
for Re(s) > 3/4, where

Rm,n(s) = 2
√
i
∑
c 6=0

Hc(h,m, h
′, n)

|c|2s−1/2

×
∫ ∞
v=0

∫ ∞
u=−∞

(
∞∑
p=1

(− m
c2v(u+i)

)p

p!

)
ve−2πnve−2πinvu

(u+ i)s+1/2(u− i)s
du dv.

The function Rm,n(s) is holomorphic for Re(s) > 1/4, so (2.3.17) extends to this do-
main by analytic continuation. Further, using the fact that the Kloosterman sums
Hc(h,m, h

′, n) are universally bounded together with the basic estimate
∣∣∑∞

p=1
zp

p!

∣∣ ≤ |z|
for Re(z) < 0, we easily obtain Rm,n(1/2) = O(n−1) as n→∞.

The Poincaré series Pn,h′(τ, s̄+ 2) converges at s = 1/2, and the meromorphic contin-
uation of Pm,h(τ, s) has at most a simple pole at s = 1/2. Hence, in order to bound the
constant term of Z(h,m, h′, n; s) at s = 3/4, we need to estimate the inner products(

CTs=1/2

(
Pm,h(τ, s)

)
,Pn,h′(τ, 5/2)

)
and (

Ress=1/2

(
Pm,h(τ, s)

)
,
(
d
ds
Pn,h′(τ, s)

)∣∣
s=5/2

)
.

This can be done using the Cauchy-Schwarz inequality and the fact that the norms
‖Pn,h′(τ, 5/2)‖ and ‖

(
d
ds
Pn,h′(τ, s)

)
|s=5/2‖ are O(n−7/4+ε) as n → ∞, compare [Pri00],

Lemma 3. Taking everything together, we finally obtain the desired bound

CTs=3/4

(
b1/2,m,h(n, h

′, s)
)

= O
(
n3/2

)
as n→∞. The proof is finished.

2.4 Theta functions

In this section we introduce the theta functions that we will employ as kernel functions
for the lifts we investigate in this work. As before we let L ⊆ V be an even lattice with
dual lattice L′ and we let Γ be a congruence subgroup of SL2(Z) which maps L to itself
and acts trivially on L′/L.
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2.4.1 The Siegel, Kudla-Millson, Millson and Shintani theta
functions

For z = x+ iy ∈ H we let

gz =

(
1 x
0 1

)(√
y 0

0 1/
√
y

)
∈ SL2(R)

be a matrix with gzi = z. Then the vectors

X1(z) =
1√

2Ny

(
−x x2 + y2

−1 x

)
= gze1,

X2(z) =
1√

2Ny

(
x −x2 + y2

1 −x

)
= gze2,

X3(z) =
1√

2Ny

(
y −2xy
0 −y

)
= gze3,

form an orthogonal basis of V (R) with

(X1(z), X1(z)) = 1 and (X2(z), X2(z)) = (X3(z), X3(z)) = −1.

In particular, for each z ∈ H we have a corresponding isometry

vz : V (R)→ R1,2, vz

(
3∑
i=1

αiXi(z)

)
= (α1, α2, α3).

For z = x+ iy ∈ H and X = ( x2 x1
x3 −x2

) ∈ V (R) we define the quantities

QX(z) =
√

2Ny(X,X2(z) + iX3(z)) = N(x3z
2 − 2x2z − x1),

pX(z) =
√

2(X,X1(z)) = −
√
N

y
(x3|z|2 − 2x2x− x1).

Under the isometry vz they correspond to the polynomials
√

2α1 and −
√

2Ny(α2 + iα3)
on R1,2, which are harmonic and homogeneous of degree (1, 0) and (0, 1), respectively.
For M ∈ SL2(R) we have the transformation rules

QX(Mz) = j(M, z)−2QM−1X(z),

pX(Mz) = pM−1X(z),
(2.4.1)
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and the useful identities

Q(Xz) =
1

4
p2
X(z),

Q(Xz⊥) = − 1

4Ny2
|QX(z)|2,

which can be verified by a direct calculation. Here Xz and Xz⊥ denote the orthogonal
projections of X to the positive line RX1(z) and the negative plane RX2(z) + RX3(z),
respectively. It is common in the literature on theta functions and theta lifts in signature
(1, 2) to define the quantity

R(X, z) = −2Q(Xz⊥) =
1

2
p2
X(z)− (X,X),

which is non-negative and equals 0 if and only if X ∈ RX1(z). Then we have

2πi(τQ(Xz) + τ̄Q(Xz⊥)) = −2πvR(X, z) + 2πiτQ(X).

Remark 2.4.1. For the lattice L from Section 2.2.5 and X =
( −b/2N −c/N

a b/2N

)
∈ L′ we

have
QX(z) = aNz2 + bz + c

and

pX(z) = −aN |z|
2 + bx+ c

y
√
N

.

In particular, these quantities are related to CM points and geodesics associated to the
quadratic form QX = [aN, b, c] corresponding to X as in Section 2.2.5. If Q(X) > 0
then QX(z) = 0 if and only if z = zX is the CM point associated to X, and if Q(X) < 0
then pX(z) = 0 if and only if z lies on the geodesic cX .

For k ∈ Z≥0 we now define the theta functions

Θ(τ, z) = vΘ(τ, vz, 1),

ΘKM(τ, z) = vΘ(τ, vz, p
2
X(z)),

ΘM,k(τ, z) = v1+kΘ
(
τ, vz, pX(z)Qk

X(z̄)
)
,

ΘSh,k(τ, z) = v1/2Θ
(
τ, vz, y

−2k−2Qk+1
X (z̄)

)
,

which we call the Siegel, the Kudla-Millson, the Millson and the Shintani theta
function, respectively. Here Θ(τ, v, p) denotes the theta function associated to an isom-
etry v : V (R)→ R1,2 and a polynomial p on R1,2 as in Section 2.1.3. Note that we wrote
p2
X(z) instead of 2α2

1, and QX(z̄) instead of QX(z) by an inessential abuse of notation.

Remark 2.4.2. The above theta functions have been studied in many recent works, for
example [BF04, BF06, Höv12, AE13, BFI15, AGOR15, Cra15, Alf15], but they date back
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much earlier. For example, the Siegel theta function was considered by Siegel [Sie51], and
the Shintani theta function was used by Shintani [Shi75], Niwa [Niw74], Cipra [Cip83],
and Gross, Kohnen and Zagier [ZK81, GKZ87] (they actually used a holomorphic version
of the Shintani kernel), to study the Shimura-Shintani correspondence between cusp
forms of integral weight 2k + 2 and half-integral weight 3/2 + k.

In their works [KM86] and [KM90], Kudla and Millson defined certain Schwartz func-
tions ϕ and ψ with values in the differential forms of degree q and q − 1 on a rational
quadratic space V of signature (p, q), and they used the associated theta functions and
lifts to show that the generating series of cycle integrals of compactly supported differen-
tial forms along certain special cycles are cusp forms. The 2-form ΘKM(τ, z)dµ(z) is the
theta function associated to the Schwartz form form ϕ in the case of signature (1, 2), and
ΘM,0(τ, z) is the theta function associated to the Schwartz function ψ in signature (2, 1).

In fact, the 1-form ΘSh,0(τ, z)dz + ΘSh,0(τ, z)dz̄ is also an instance of a theta function
associated to ϕ, now in signature (2, 1). The Schwartz forms ϕ and ψ by construction
satisfy a certain differential equation which translates into a differential equation for
the Shintani and the Millson theta functions (see Lemma 2.4.9), and which is of great
importance for our work.

Remark 2.4.3. Let us give more explicit formulas for the theta functions. Since the
polynomials corresponding to pX(z)Qk

X(z̄) and y−2k−2Qk+1
X (z̄) are harmonic for each

k ≥ 0, the Millson and the Shintani theta functions can be explicitly written as

ΘM,k(τ, z) = v1+k
∑

h∈L′/L

∑
X∈h+L

pX(z)Qk
X(z̄)e(τQ(Xz) + τ̄Q(Xz⊥))eh

and
ΘSh,k(τ, z) = v1/2

∑
h∈L′/L

∑
X∈h+L

y−2k−2Qk+1
X (z̄)e(τQ(Xz) + τ̄Q(Xz⊥))eh.

On the other hand, the function p2
X(z) corresponds to the polynomial 2α2

1, and the
polynomial

exp

(
− ∆

8π Im(τ)

)
2α2

1 = 2α2
1 −

1

2π Im(τ)

corresponds to the function p2
X(z)− 1

2πv
, so the Kudla-Millson theta function equals

ΘKM(τ, z) =
∑

h∈L′/L

∑
X∈h+L

(
vp2

X(z)− 1

2π

)
e(τQ(Xz) + τ̄Q(Xz⊥))eh,

which is the formula often used in the literature, see [BF06], Section 3, for example.

Next, we summarize the transformation properties of the theta functions.
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Proposition 2.4.4. Let k ∈ Z, k ≥ 0.

1. The Siegel theta function Θ(τ, z) has weight −1/2 for ρL in τ and weight 0 for Γ
in z.

2. The Kudla-Millson theta function ΘKM(τ, z) has weight 3/2 for ρL in τ and weight
0 for Γ in z.

3. The Millson theta function ΘM,k(τ, z) has weight 1/2−k for ρL in τ and ΘM,k(τ, z)
has weight −2k in for Γ in z.

4. The Shintani theta function ΘSh,k(τ, z) has weight k + 3/2 for ρ∗L in τ and
ΘSh,k(τ, z) has weight 2k + 2 for Γ in z.

Proof. The behaviour in z follows from the rules (2.4.1), and the behaviour in τ follows
from Theorem 2.1.1 if we use that pX(z) and QX(z) are homogenous of degree (1, 0) and
(0, 1), respectively.

2.4.2 Growth of the theta functions at the cusps

Next, we want to investigate the growth of the above theta functions at the cusps of
Γ. To describe this in a convenient way, we follow the ideas of [BFI15, Section 2.2] and
define certain unary theta functions associated to the cusps.

For an isotropic line ` ∈ Iso(V ) the space W` = `⊥/` is a unary negative definite
quadratic space with the quadratic form Q(X + `) := Q(X), and

K` = (L ∩ `⊥)/(L ∩ `)

is an even lattice with dual lattice

K ′` = (L′ ∩ `⊥)/(L′ ∩ `).

The vector X` = σ`.X3(i) is a basis of W` with (X`, X`) = −1, and for k ∈ Z≥0

the polynomial p`,k(X) = (−
√

2Ni(X,X`))
k is homogeneous of degree (0, k). We let

Θ`,k(τ) be the theta function associated to K` and p`,k. By Theorem 2.1.1 the complex

conjugate Θ`,k(τ) is an almost holomorphic modular form of weight k + 1/2 for the
dual Weil representation of K`. Using [Bru02, Lemma 5.6.], it gives rise to an almost
holomorphic modular form of weight k + 1/2 for the dual Weil representation ρ∗L of L,
which we also denote by Θ`,k(τ). For k = 0 it is a holomorphic modular form, and for
k = 1 it is a cusp form.

Remark 2.4.5. We want to make this construction more explicit. Let us write Θ`,k(τ) =∑
h∈L′/L

∑
m≥0 b`,k(m,h, v)e(mτ)eh for the Fourier expansion of the theta function. For
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m = 0 we have b`,k(0, h, v) = 0 unless ` ∩ (L+ h) 6= ∅, in which case we have

b`,k(0, h, v) =
(−
√
Ni)k

(4πv)k/2
Hk (0) ,

where Hk(x) = (−1)kex
2 dk

dxk
e−x

2
is the k-th Hermite polynomial. Further, for m > 0

we have b`,k(m,h, v) = 0 unless m/N is a square and there exists a vector X ∈ L−m,h
orthogonal to `, in which case it equals

b`,k(m,h, v) = (±1)k
(−
√
Ni)k

(4πv)k/2
Hk

(
2
√
πmv

)
if h 6= −hmodL, and 1+(−1)k times this expression if h = −hmodL. If h 6= −hmodL
the sign is +1 if ` = `X , and −1 if ` = `−X (if h = −hmodL then the coefficient vanishes
if k is odd, and the sign does not matter if k if even).

From the Fourier expansions we find that the theta functions are related by

ξ3/2+kΘ`,k+1(τ) = −Nk(k + 1)

4π
vk−1/2Θ`,k−1(τ),

for k > 0.
All of these formulas can be proven by straightforward, but tedious computations.

Since we will not use them, we omit the proofs.

Remark 2.4.6. If L is the lattice from Section 2.2.5, then the theta functions Θ`,k(τ, z)
for k = 0, 1 and ` = ∞ agree (up to a simple constant) with the unary theta functions
θ1/2,N(τ) and θ3/2,N(τ) defined in Section 2.3.6. More generally, for other cusps `, the

functions Θ`,k(τ, z) are obtained from θ1/2,N(τ) and θ3/2,N(τ) by applications of suitable
Atkin-Lehner and level raising operators to θ1/2,N(τ) and θ3/2,N(τ).

We can now estimate the growth of our theta functions at the cusps of Γ.

Proposition 2.4.7. Let ` ∈ Γ\ Iso(V ) be a cusp of Γ.

1. For the Siegel theta function we have

Θ(τ, σ`z) = y
1√
Nβ`

v1/2Θ`,0(τ) +O(e−Cy
2

),

as y →∞, uniformly in x, for some constant C > 0.

2. For the Kudla-Millson theta function we have

ΘKM(τ, σ`z) = O(e−Cy
2

),

as y →∞, uniformly in x, for some constant C > 0.
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3. For the Millson theta function we have

ΘM,k(τ, σ`z) = O(e−Cy
2

),

if k = 0, and

j(σ`, z̄)2kΘM,k(τ, σ`z) = −yk+1 k

2πβ`
vk−1/2Θ`,k−1(τ) +O(e−Cy

2

),

if k > 0, as y →∞, uniformly in x, for some constant C > 0.

4. For the Shintani theta function we have

j(σ`, z)
−2k−2ΘSh,k(τ, σ`z) = y−k

1√
Nβ`

Θ`,k+1(τ) +O(e−Cy
2

),

as y →∞, uniformly in x, for some constant C > 0.

Moreover, all of the partial derivates of the functions hidden in the O-notation are square
exponentially decreasing as y →∞.

Proof. Using the rules (2.4.1) we can write

j(σ`, z̄)2kΘM,k(τ, σ`z)

= v1+k
∑

h∈(σ−1
` L)′/(σ−1

` L)

∑
X∈h+(σ−1

` L)

pX(z)Qk
X(z̄)e(τQ(Xz) + τ̄Q(Xz⊥))eh,

and similarly for the other theta functions, so we can equivalently estimate the growth
of the theta functions for the lattice σ−1

` L at the cusp ∞. The result now follows from
Theorem 5.2 in [Bor98] applied to the lattice σ−1

` L and the primitive isotropic vector(
0 β`
0 0

)
∈ `∞ ∩ σ−1

` L.

2.4.3 Differential equations for theta functions

The theta functions we just defined satisfy some interesting differential equations, some
of which we collect now. All of the following identities can be checked by a direct
computation using the rules

∂

∂z
y−2QX(z) = −i

√
Ny−2pX(z),

∂

∂z
pX(z) = − i

2
√
N
y−2QX(z̄),

∂

∂z
R(X, z) = − i

2
√
N
y−2pX(z)QX(z̄), y−2QX(z)QX(z̄) = 2NR(X, z).

(2.4.2)

Since the computations are rather lengthy and not very enlightening, we skip the proofs.
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Lemma 2.4.8. For k ≥ 0, we have

∆1/2,τv
−1/2Θ(τ, z) =

1

4
∆0,zv

−1/2Θ(τ, z),

∆3/2,τΘKM(τ, z) =
1

4
∆0,zΘKM(τ, z),

∆1/2−k,τΘM,k(τ, z) =
1

4
∆−2k,zΘM,k(τ, z),

∆k+3/2,τΘSh,k(τ, z) =
1

4
∆2k+2,zΘSh,k(τ, z).

Proof. Compare [BFI15, Lemma 5.1], [Höv12, Proposition 3.10] and [Bru02, Proposi-
tion 4.5],

The Millson and the Shintani theta function are related by the following identities.

Lemma 2.4.9. For k ≥ 0 we have

ξ1/2−k,τΘM,k(τ, z) =
1

2
√
N
ξ2k+2,zΘSh,k(τ, z)

and

ξ3/2+k,τΘSh,k(τ, z) =

√
N

2
ξ−2k,zΘM,k(τ, z).

Proof. Compare [BKV13, Lemma 3.3] or [Cra15, Lemma 7.2.1].

The Siegel and the Kudla-Millson theta functions satisfy the following differential
equations.

Lemma 2.4.10. We have

R−1/2,τΘ(τ, z) = −πΘKM(τ, z)

and

L3/2,τΘKM(τ, z) =
1

4π
∆0,zΘ(τ, z).

Proof. Compare [BFI15, Remark 5.3] and [BF04, Theorem 4.4].

We will also need the following relations between Millson theta functions of different
weights and the Millson and Kudla-Millson theta functions:

Lemma 2.4.11. For k ≥ 0 we have

L−2k−2,zL−2k,zL1/2−k,τΘM,k(τ, z) =
π

N
(∆−2k−4,z − 4k − 6) ΘM,k+2(τ, z).
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Further, we have

L0,zL3/2,τΘKM(τ, z) = − 1

2
√
N

(∆−2,z − 2)ΘM,1(τ, z).

Proof. This can be shown by a direct calculation using the identities (2.4.2).

2.4.4 Twisted theta functions

We now explain how to obtain twisted versions of the theta functions defined above.
Throughout this section we let L be the lattice defined in Section 2.2.5 and we let
Γ = Γ0(N).

Let ∆ ∈ Z be a fundamental discriminant (possibly 1) and r ∈ Z such that ∆ ≡
r2(4N). We consider the rescaled lattice L(∆) = ∆L together with the quadratic form

Q∆(X) =
1

|∆|
Q(X).

The corresponding bilinear form is given by

(X, Y )∆ =
1

|∆|
(X, Y ),

and the dual lattice of L(∆) is equal to L′.

Following [GKZ87] we define a generalized genus character for δ =
(
−b/2N −c/N
a b/2N

)
∈ L′

by

χ∆(δ) = χ∆([aN, b, c]) :=


(

∆
n

)
, if ∆|b2 − 4Nac, (b2 − 4Nac)/∆ is a

square mod 4N and gcd(a, b, c,∆) = 1,

0, otherwise.

Here, Qδ = [aN, b, c] is the integral binary quadratic form corresponding to δ, and n
is any integer prime to ∆ represented by one of the quadratic forms [N1a, b,N2c] with
N1N2 = N and N1, N2 > 0. Note that the function χ∆ is invariant under the action of
Γ0(N).

Since χ∆(δ) depends only on δ ∈ L′ modulo ∆L, we can view it as a function on the
discriminant group L′/L(∆). Let ρL(∆) be the representation corresponding to L(∆). In
[AE13] it was shown that we obtain an intertwiner of the Weil representations corre-
sponding to L and L(∆) via χ∆.
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Proposition 2.4.12 ([AE13, Proposition 3.2.]). Let π : L′/L(∆) → L′/L be the natural
projection. For h ∈ L′/L we define

ψ∆,r(eh) =
∑

δ∈L′/L(∆)

π(δ)=rh
Q∆(δ)≡sgn(∆)Q(h) (Z)

χ∆(δ)eδ. (2.4.3)

Then ψ∆,r : L′/L→ L′/L(∆) defines an intertwining linear map between the representa-
tions ρ̃L and ρL(∆), where

ρ̃L =

{
ρL if ∆ > 0,

ρ∗L if ∆ < 0.

We obtain twisted theta functions by setting

Θ∆,r(τ, z, p) =
∑

h∈L′/L

〈
ψ∆,r(eh),Θ(∆)(τ, z, p)

〉
eh,

where Θ(∆)(τ, z, p) is the theta function associated to L(∆) and a polynomial p.
It is easy to check that the twisted versions of the Siegel, Millson, Kudla-Millson

and Shintani theta functions have the same transformation behaviour as their untwisted
counterparts (see Proposition 2.4.4) and satisfy the same growth estimates (see Propo-
sition 2.4.7) and differential equations if we replace ρL by ρ̃L, N by N/|∆| and Θ`,k

by

Θ`,k,∆,r =
∑

h∈L′/L

〈
ψ∆,r(eh),Θ

(∆)
`,k

〉
eh.

Example 2.4.13. The twisted Millson theta function is explicitly given by

ΘM,k,∆,r(τ, z)

= v1+k
∑

h∈L′/L

∑
X∈L+rh

Q(X)≡∆Q(h)(∆)

χ∆(X)
pX(z)Qk

X(z̄)

|∆|(k+1)/2
e(τQ∆(Xz) + τ̄Q∆(Xz⊥))eh,

and the twisted Shintani theta function is given by

ΘSh,k,∆,r(τ, z)

= v1/2
∑

h∈L′/L

∑
X∈L+rh

Q(X)≡∆Q(h)(∆)

χ∆(X)
y−2k−2Qk+1

X (z̄)

|∆|(k+1)/2
e(τQ∆(Xz) + τ̄Q∆(Xz⊥))eh.
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3.1 The Millson and the Shintani theta lift

Let k ∈ Z≥0 and let F ∈ H+
−2k(Γ) be a harmonic Maass form. We would like to integrate

F against the Millson theta function ΘM,k(τ, z) on M = Γ\H to obtain a function that
transforms like a modular form of weight 1/2−k. Unfortunately, Proposition 2.4.7 shows
that the integral does not converge for k > 0, so it has to be regularized in a suitable
way. Using the regularization of [Bor98], we define the Millson theta lift by

IM(F, τ) = lim
T→∞

∫
MT

F (z)ΘM,k(τ, z)y−2kdµ(z),

(
dµ(z) =

dx dy

y2

)
.

Note that we integrate in the orthogonal variable z here. The integral in the symplectic
variable τ was considered previously in [Höv12], [BKV13] and [Cra15]. It was shown that
the corresponding lift has jump singularities along certain geodesics in the upper-half
plane, which led to the discovery of locally harmonic Maass forms. Similarly, the theta
lifts investigated in the fundamental works of Borcherds [Bor98] and Bruinier [Bru02]
(which are integrals in the τ -variable) have singularities along Heegner divisors in H. In
contrast to these singular lifts, it turns out that the Millson theta lift is in fact harmonic
on the upper half-plane.

Proposition 3.1.1. For k ∈ Z≥0 the Millson theta lift IM(F, τ) of F ∈ H+
−2k(Γ) is a

harmonic function that transforms like a modular form of weight 1/2− k for ρL.

Proof. Using the truncated fundmantal domain FT (Γ) for MT given in Section 2.2.2, we
see that it suffices to show that the limit

lim
T→∞

∫ T

1

∫ α`

0

F`(z)j(σ`, z̄)2kΘM,k(τ, σ`z)y−2k−2dx dy

exists for every cusp ` ∈ Iso(V ), where F` = F |−2kσ`. For k = 0 Proposition 2.4.7 states
that the Millson theta function is square exponentially decreasing at all cusps, so the
integral actually converges without regularization in this case. For k > 0 we see by the
same proposition that it suffices to show that

lim
T→∞

∫ T

1

∫ α`

0

F`(z)y−k−1dx dy
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3 The Millson Theta Lift

exists. But the integral over x picks out the constant coefficient a+
` (0) of F`, and the

limit of the remaining integral over y gives 1
k
. This shows that IM(F, τ) is well-defined.

The transformation behaviour of the Millson theta function implies that IM(F, τ) has
weight 1/2− k for ρL.

To prove that IM(F, τ) is harmonic we first use Lemma 2.4.8 to write

∆1/2−k,τI
M(F, τ) = lim

T→∞

∫
MT

F (z)∆1/2−k,τΘM,k(τ, z)y−2kdµ(z)

= lim
T→∞

1

4

∫
MT

F (z)∆−2k,zΘM,k(τ, z)y−2kdµ(z).

By Lemma 2.3.9, i.e. Stokes’ theorem, we have∫
MT

F (z)∆−2k,zΘM,k(τ, z)y−2kdµ(z)−
∫
MT

∆−2k,zF (z)ΘM,k(τ, z)y−2kdµ(z)

=

∫
∂MT

F (z)ξ−2k,zΘM,k(τ, z)dz −
∫
∂MT

ξ−2k,zF (z)ΘM,k(τ, z)dz.

As pointed out in Remark 2.3.8, we can write the boundary integrals above as sums
of horizontal boundary pieces corresponding to the cusps of Γ. Then it follows easily
from the growth estimates in Proposition 2.4.7 that the boundary integrals vanish in the
limit. Since F is harmonic, we obtain ∆1/2−k,τI

M(F, τ) = 0.

We define the Shintani theta lift of a cusp form G ∈ S2k+2(Γ) by

ISh(G, τ) =

∫
M

G(z)ΘSh,k(τ, z)y2k+2dµ(z).

The rapid decay of G at the cusps and similar arguments as above show that ISh(G, τ)
converges to a harmonic function which transforms like a modular form of weight 3/2+k
for the dual Weil representation ρ∗L. The Millson and the Shintani theta lifts are related
by the following identity.

Proposition 3.1.2. For F ∈ H+
0 (Γ) with constant coefficients a+

` (0) at the cusps we
have

ξ1/2,τ (I
M(F, τ)) = − 1

2
√
N
ISh(ξ0,zF, τ) +

1

2N

∑
`∈Γ\ Iso(V )

ε`a
+
` (0)Θ`,1(τ),

and for k ∈ Z>0 and F ∈ H+
−2k(Γ) we have

ξ1/2−k,τ (I
M(F, τ)) = − 1

2
√
N
ISh(ξ−2k,zF, τ).
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3.1 The Millson and the Shintani theta lift

Proof. By Lemma 2.4.9 we have for k ∈ Z≥0

ξ1/2−k,τ (I
M(F, τ)) = lim

T→∞

∫
MT

F (z)ξ1/2−k,τΘM,k(τ, z)y−2kdµ(z)

= lim
T→∞

1

2
√
N

∫
MT

F (z)ξ2k+2,zΘSh,k(τ, z)y−2kdµ(z).

Using Stokes’ theorem in the version given in Lemma 2.3.7 we obtain∫
MT

F (z)ξ2k+2,zΘSh,k(τ, z)y−2kdµ(z) = −
∫
MT

ξ−2k,zF (z)ΘSh,k(τ, z)y2k+2dµ(z)

−
∫
∂MT

F (z)ΘSh,k(τ, z)dz.

The limit as T → ∞ of the first line on the right-hand side is −ISh(ξ−2k,zF, τ). The
boundary integral can be written as

−
∫
∂MT

F (z)ΘSh,k(τ, z)dz =
∑

`∈Γ\ Iso(V )

∫ α`+iT

iT

F`(z)j(σ`, z)−2k−2ΘSh,k(τ, σ`z)dz,

where F` = F |−2kσ`. Using Proposition 2.4.7 and carrying out the integral we see that
the right-hand side vanishes in the limit if k > 0 and equals

1√
N

∑
`∈Γ\ Iso(V )

ε`a
+
` (0)Θ`,1(τ)

if k = 0. This completes the proof.

We summarize the most important mapping properties of the Millson and the Shintani
theta lift in the following theorem.

Theorem 3.1.3.

1. The Millson theta lift maps H+
−2k(Γ) to H+

1/2−k,ρL for k ≥ 0.

2. The Millson theta lift maps M !
0(Γ) to H+

1/2,ρL
and M !

−2k(Γ) to M !
1/2−k,ρL for k > 0.

3. The Shintani theta lift maps S2k+2(Γ) to S3/2+k,ρ∗L
for k ≥ 0.

Proof. For the first item it remains to compute the Fourier expansion of the Millson
theta lift, which will be done in Section 3.3. The second claim then follows immediatly
from Proposition 3.1.2 if we use that ξ−2k annihilates holomorphic functions and that
Θ`,1(τ) is a cusp form of weight 3/2 for ρ∗L. The third item then follows by combining
the first item with Proposition 3.1.2 and the fact that ξ−2k : H+

−2k(Γ) → S2k+2(Γ) is
surjective.
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3 The Millson Theta Lift

3.2 Higher weight theta lifts via differential operators

The square exponential decay of the k = 0 Millson theta function and the Kudla-
Millson theta function at the cusps implies that the integral of a harmonic Maass form
F ∈ H+

0 (Γ) against each of the two theta functions over M = Γ\H converges without
regularization. Following ideas of [BO13] and [Alf15], we define theta lifts of F ∈
H+
−2k(Γ) by first raising it to a Γ-invariant function, integrating it against the two theta

functions, and then applying suitable differential operators to make the result harmonic
again. To make this precise let k ∈ Z≥0 and F ∈ H+

−2k(Γ). We define

ΛM(F, τ) =


L
k/2
1/2,τ

∫
Γ\H

Rk
−2k,zF (z)ΘM,0(τ, z)dµ(z), if k is even,

L
(k+1)/2
3/2,τ

∫
Γ\H

Rk
−2k,zF (z)ΘKM(τ, z)dµ(z), if k is odd.

This lift has been considered by Alfes-Neumann in her thesis [Alf15], where it was called
the Bruinier-Funke lift.

Proposition 3.2.1. Let k ∈ Z≥0 and F ∈ H+
−2k(Γ). The theta lift ΛM(F, τ) is a

harmonic function which transforms like a modular form of weight 1/2− k for ρL.

Proof. By what we have said above, all integrals converge. The transformation behaviour
is then obvious. To prove that the lifts are harmonic we use the relations in Lemma 2.3.5,
Lemma 2.4.8 and Stokes’ theorem as above.

Remark 3.2.2. Similarly, we can define a theta lift

Λ̃M(F, τ) =


R

(k+1)/2
1/2,τ

∫
Γ\H

Rk
−2k,zF (z)ΘM,0(τ, z)dµ(z), if k is odd,

R
k/2
3/2,τ

∫
Γ\H

Rk
−2k,zF (z)ΘKM(τ, z)dµ(z), if k is even.

This gives a weakly holomorphic modular form of weight 3/2 + k for ρL if k > 0, see
[Alf14, Alf15]. The case k = 0, i.e. the Kudla-Millson theta lift, was considered by
Bruinier and Funke in [BF06]. It yields a harmonic Maass form of weight 3/2 for ρL
which maps to a linear combination of unary theta series of weight 1/2 under ξ3/2.

We now want to show that the regularized Millson theta lift IM(F, τ) defined above
agrees with ΛM(F, τ) up to some constant. This connects our work with the work of
Alfes-Neumann [Alf15], and it will be useful when we compute the Fourier coefficients
of IM(F, τ).
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3.2 Higher weight theta lifts via differential operators

Theorem 3.2.3. Let k ∈ Z≥0 and F ∈ H+
−2k(Γ). Then

IM(F, τ) =

((
− π
N

)k/2 k/2−1∏
j=0

(k − 2j)(k + 2j + 1)

)−1

ΛM(F, τ),

if k is even, and

IM(F, τ) =

(
− 1

2
√
N

(
− π
N

)(k−1)/2
(k−1)/2∏
j=0

(k − 2j + 1)(k + 2j)

)−1

ΛM(F, τ),

if k is odd.

Proof. The proof involves several applications of Stokes’ theorem. Using the growth es-
timates of the theta functions given in Proposition 2.4.7 it is straightforward but tedious
to verify that all boundary integrals vanish in the limit. We omit these verifications to
simplify the exposition.

First let k be even. We consider the expression

Ij(F, τ) = lim
T→∞

L
k/2−j
1/2−2j,τ

∫
MT

Rk−2j
−2k,zF (z)ΘM,2j(τ, z)y−4jdµ(z)

for 0 ≤ j ≤ k/2. By the same arguments as above, it converges to a harmonic function
of weight 1/2− k for ρL which equals ΛM(F, τ) for j = 0 and IM(F, τ) for j = k/2. We
split off the innermost lowering operator in τ and the two outermost raising operators
in z and apply (a variant of) Lemma 2.3.7 twice to see that Ij(F, τ) equals

lim
T→∞

L
k/2−j−1
1/2−2j−2,τ

∫
MT

Rk−2j−2
−2k,z F (z)L−4j−2,zL−4j,zL1/2−2j,τΘM,2j(τ, z)y−4j−4dµ(z).

By Lemma 2.4.11 we have

L−4j−2,zL−4j,zL1/2−2j,τΘM,2j(τ, z) =
π

N
(∆−4j−4,z − 8j − 6)ΘM,2j+2(τ, z).

Using Lemma 2.3.9 we now move the Laplace operator to Rk−2k−2
−2k,z F in the integral over

MT . Lemma 2.3.5 shows that

∆−4j−4,zR
k−2j−2
−2k F = −(k − 2j − 2)(k + 2j + 3)Rk−2j−2

−2k,z F,

so together we obtain after a short calculation

Ij(F, τ) = − π
N

(k − 2j)(k + 2j + 1)Ij+1(F, τ).

The formula for even k now follows inductively.
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3 The Millson Theta Lift

For odd k we first split off the innermost lowering operator in τ and the outermost
raising operator in z in ΛM(F, τ) and apply Lemma 2.3.7 to get

ΛM(F, τ) = − lim
T→∞

L
(k−1)/2
−1/2,τ

∫
MT

Rk−1
−2k,zF (z)L0,zL3/2,τΘKM(τ, z)y−2dµ(z).

By Lemma 2.4.11 we have

L0,zL3/2,τΘKM(τ, z) = − 1

2
√
N

(∆−2,z − 2)ΘM,1(τ, z).

Moving the Laplace operator to Rk−1
−2kF with Lemma 2.3.9 and using that

∆−2,zR
k−1
−2k,zF = −(k − 1)(k + 2)Rk−1

−2k,zF

we arrive at

ΛM(F, τ) = − 1

2
√
N
k(k + 1) lim

T→∞
L

(k−1)/2
−1/2,τ

∫
MT

Rk−1
−2k,zF (z)ΘM,1(τ, z)y−2dµ(z).

Similarly as in the even k case we consider

Ij(F, τ) = lim
T→∞

L
(k−1)/2−j
−1/2−2j,τ

∫
MT

Rk−1−2j
−2k,z F (z)ΘM,2j+1(τ, z)y−4j−2dµ(z)

for 0 ≤ j ≤ (k − 1)/2. Note that

− 1

2
√
N
k(k + 1)I0 = ΛM and I(k−1)/2 = IM .

As above we see that

Ij = − π
N

(k − (2j + 1))(k + (2j + 1) + 1)Ij+1.

The formula for odd k now follows inductively.

Remark 3.2.4. In [Alf15] the relation between the Millson lift and the Shintani lift
from Proposition 3.1.2 was proven for k = 0 and under the hypothesis that the constant
coefficients a+

` (0) of F vanish at all cusps. It was conjectured there that the relation from
Proposition 3.1.2 holds for the lift ΛM(F, τ) for all k ≥ 0, but this seems to be difficult
to prove directly. Theorem 3.2.3 and Proposition 3.1.2 show that it indeed holds.
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3.3 The Fourier expansion of the Millson lift

3.3 The Fourier expansion of the Millson lift

The Fourier expansions of the Millson lift involves traces of CM values and geodesic cycle
integrals of the input function, as well as the so-called complementary traces, which form
the principal part and are defined as follows. Let m ∈ Q<0 and assume that |m|/N is a
square, i.e. m = −Nd2 for some d ∈ Q. Let F ∈ H+

−2k(Γ). For an isotropic line ` we let
a+
` (w) be the coefficients of the holomorphic part F+

` of F` = F |−2kσ`. Let X ∈ L−Nd2,h.
Recall that ΓX is trivial and X gives rise to an infinite geodesic c(X). Choosing the
orientation of V appropriately, we have

σ−1
`X
X = d

(
1 −2r`X
0 −1

)
for some r`X ∈ Q. Note that the geodesic cX in D is given by

cX = σ`X{z ∈ H : Re(z) = r`X}.

Therefore we call Re(c(X)) := r`X the real part of c(X). We now define the complemen-
tary trace of F by

trcF (−Nd2, h) =
∑

X∈Γ\L−Nd2,h

(∑
w<0

a+
`X

(w)(4πw)ke2πiRe(c(X))w

+ (−1)k+1
∑
w<0

a+
`−X

(w)(4πw)ke2πiRe(c(−X))w

)
.

Let L−Nd2,h,` = {X ∈ L−Nd2,h : ` = `X}. Repeating the proof of [BF06], Proposition
4.7, we see that the complementary trace can also be written as

trcF (−Nd2, h) =
∑

`∈Γ\ Iso(V )

ν`(−Nd2, h)
∑

w∈ 2d
β`

Z<0

a+
` (w)(4πw)ke2πirw (3.3.1)

+ (−1)k+1
∑

`∈Γ\ Iso(V )

ν`(−Nd2,−h)
∑

w∈ 2d
β`

Z<0

a+
` (w)(4πw)ke2πir′w,

where ν`(−Nd2, h) equals 2dε` if L−Nd2,h,` 6= ∅, and 0 otherwise. Further r = Re(c(X))
for any X ∈ L−Nd2,h,`, and r′ = Re(c(X)) for any X ∈ L−Nd2,−h,`, if there exist such
elements X. In particular, this shows that trcF (−Nd2, h) = 0 for all but finitely many d.

We are now ready to state the Fourier expansion of the Millson theta lift.
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3 The Millson Theta Lift

Theorem 3.3.1. Let k ∈ Z≥0 and let F ∈ H+
−2k(Γ). For k > 0 the h-th component of

IM(F, τ) is given by

∑
m>0

1

2
√
m

( √
N

4π
√
m

)k (
tr+
Rk−2kF

(m,h) + (−1)k+1 tr−
Rk−2kF

(m,h)
)
qm

+
∑
d>0

1

2i
√
Nd

(
1

4πid

)k
trcF (−Nd2, h)q−Nd

2

+
(−1)kk!

2
√
Nπk+1

∑
`∈Γ\ Iso(V )
`∩(L+h)6=∅

a+
` (0)

α`

βk+1
`

(
ζ(s+ 1, k`/β`) + (−1)k+1ζ(s+ 1, 1− k`/β`)

)∣∣
s=k

−
∑
m<0

1

2(4π|m|)k+1/2
trξ−2kF (m,h)Γ (1/2 + k, 4π|m|v) qm,

where
ζ(s, ρ) =

∑
n≥0
n+ρ6=0

(n+ ρ)−s

is the Hurwitz zeta function, and k` ∈ Q with 0 ≤ k` < β` is defined by σ−1
` h` =

(
0 k`
0 0

)
for some h` ∈ ` ∩ (L+ h).

For k = 0 the h-th component of IM(F, τ) is given by the same formula as above but
with the additional non-holomorphic terms∑

d>0

1

4id
√
πN

∑
X∈Γ\L−Nd2,h

(
a+
`X

(0)− a+
`−X

(0)
)
Γ
(
1/2, 4πNd2v

)
q−Nd

2

.

Note that the first three lines in Theorem 3.3.1 are the holomorphic part of IM(F, τ),
whereas the fourth line and the additional terms (for k = 0) are the non-holomorphic
part of IM(F, τ). The alternative form of the complementary trace given in (3.3.1) shows
that the principal part of IM(F, τ) is finite. In particular, this completes the proof of
Theorem 3.1.3.

Remark 3.3.2. The Hurwitz zeta function ζ(s, ρ) is holomorphic for Re(s) > 1 and has
a simple pole at s = 1 with residue 1 and constant term −ψ(ρ), where ψ(0) = −γ (with

γ the Euler-Mascheroni constant) and ψ(ρ) = Γ′(ρ)
Γ(ρ)

is the digamma function if ρ > 0.
Note that k` = 0 is equivalent to h ∈ L. Thus for k = 0 we get(

ζ(s+ 1, k`/β`)− ζ(s+ 1, 1− k`/β`)
)∣∣
s=0

= ψ(1− k`/β`)− ψ(k`/β`) =

{
0, if h ∈ L,

π cot(πk`/β`), if h /∈ L.
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3.3 The Fourier expansion of the Millson lift

For k > 0 we can simply plug in s = k in the third line of the theorem. For k` = 0 we
have ζ(k + 1, 0) = ζ(k + 1, 1) = ζ(k + 1), and if k` 6= 0 then we could also write

ζ(k + 1, k`/β`) =
(−1)k+1

k!
ψk(k`/β`)

with ψk(ρ) = dk

dρk
ψ(ρ) the polygamma function.

For the sake of completeness we also state the Fourier expansion of the Shintani lift
in our normalization.

Theorem 3.3.3. Let k ∈ Z≥0 and G ∈ S2k+2(Γ). Then the h-th component of ISh(G, τ)
is given by

ISh(G, τ)h = −
√
N
∑
m>0

trG(−m,h)qm.

Proof. Since ξ−2k,z is surjective, we can choose some F ∈ H+
−2k(Γ) with ξ−2k,zF = G.

The formula then follows from Theorem 3.3.1 combined with Proposition 3.1.2 and the
explicit action of ξ1/2−k,τ on the Fourier coefficients. Alternatively, the Fourier expansion
of ISh(G, τ) can be computed using very similar, but much easier calculations as in the
proof of Theorem 3.3.1 below.

Remark 3.3.4. By the same arguments as in [BFI15], Lemma 8.2, we see that

−i
∑

X∈Γ\L−Nd2,h

(
a+
`X

(0)− a+
`−X

(0)
)

=
1

N

∑
`∈Γ\ Iso(V )

ε`a
+
` (0)b`,1(Nd2, h),

where b`,1(Nd2, h) denotes the (Nd2, h)-th Fourier coefficient of the theta series Θ`,1(τ).
Using this, we can now directly check on the Fourier expansion that IM(F, τ) is harmonic,
and that it is related to the Shintani lift as stated in Proposition 3.1.2.

3.3.1 Fourier coefficients of positive index

To compute the coefficients of positive index m > 0 we use the relation between IM(F, τ)
and ΛM(F, τ). The computation of the Fourier coefficients of positive index is completely
due to Alfes-Neumann, and can be found in her thesis [Alf15]. We include the calculation
for even k for convenience of the reader. The case of odd k is similar. In the case that
k is even, the (m,h)-th coefficient of ΛM(F, τ) is given by

C(m,h, v) = L
k/2
1/2,τ

∫
M

Rk
−2k,zF (z)

∑
X∈Lm,h

ψ0
M(X, τ, z)dµ(z),

where we abbreviated
ψ0
M(X, τ, z) = vpX(z)e−2πvR(X,z).
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3 The Millson Theta Lift

By the usual unfolding argument we obtain

C(m,h, v) = L
k/2
1/2,τ

∑
X∈Γ\Lm,h

1∣∣ΓX∣∣
∫
H
Rk
−2k,zF (z)ψ0

M(X, τ, z)dµ(z).

For X = ( x2 x1
x3 −x2

) ∈ Lm,h and m > 0 we have x3 6= 0 and

−2πvR(X, z) = 2πv(X,X)− πv
(
N(x3x− x1)2 + q(X)√

Nx3y
+
√
Nx3y

)2

,

which implies that ψ0
M(X, τ, z) is of square-exponential decay in all directions of H.

Hence the above integral exists, and the unfolding is justified.

We split Lm,h = L+
m,h∪L

−
m,h, and replace X by −X in the sum corresponding to L−m,h,

which replaces h by −h and gives a minus sign since ψ0
M(X, τ, z) is an odd function of

X. Hence it suffices to compute the integral over H above for fixed X ∈ L+
m,h. Following

Katok and Sarnak [KS93] we rewrite it as an integral over SL2(R),∫
H
Rk
−2k,zF (z)ψ0

M(X, τ, z)dµ(z) =

∫
SL2(R)

Rk
−2k,zF (gi)ψ0

M(X, τ, gi)dg,

where we normalize the Haar measure such that the maximal compact subgroup SO(2)
has volume 1. Since X ∈ L+

m,h, there is a g1 ∈ SL2(R) such that

g−1
1 X =

√
m

N

(
0 −1
1 0

)
= −
√

2mX1(i).

Then g1i is the Heegner point corresponding to zX , and replacing g by g1g we obtain∫
SL2(R)

Rk
−2k,zF (gi)ψ0

M(X, τ, gi)dg =

∫
SL2(R)

Rk
−2k,zF (g1gi)ψ

0
M

(
−
√

2mX1(i), τ, gi
)
dg.

Using the Cartan decomposition of KA+K of SL2(R), where K = SO(2) and A+ is set
of matrices a(t) =

(
et 0
0 e−t

)
with t > 0 (see [Lan75], Chapter 7.2), we find∫

SL2(R)

Rk
−2k,zF (g1gi)ψ

0
M

(
−
√

2mX1(i), τ, gi
)
dg

= 4π

∫
K

∫ ∞
0

∫
K

Rk
−2k,zF (g1k1a(t)k2i)ψ

0
M

(
−
√

2mX1(i), τ, k1a(t)k2i
)

sinh(2t) dk1 dt dk2

= 4π

∫ ∞
1

(∫
K

Rk
−2k,zF (g1k1a(t)i)dk1

)
ψ0
M

(
−
√

2mX1(i), τ, a(t)i
)

sinh(2t) dt,

where we used that k2i = i and k−1
1 X1(i) = X1(i), and the integral over k2 equals 1.
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3.3 The Fourier expansion of the Millson lift

The function

H(g) =

∫
K

Rk
−2k,zF (g1kgi)dk

on G is left and right K-invariant and has the same eigenvalue λ = −k(k + 1) under
the invariant Laplace operator as Rk

−2k,zF (z). Thus H(g) is a spherical function of
eigenvalue λ (compare [Lan75], Chapter 4.3). By the uniqueness theorem for spherical
functions (see [Lan75], Theorem 10 (ii) in Chapter 10.3) it can be written as H(1) times
the standard spherical function of eigenvalue λ, which in this case means that

H(g) = H(e)Pk(cosh(2t)),

where e ∈ G is the identity matrix, g = k1a(t)k2 and Pk is the usual Legendre polynomial.
Note that

H(e) =

∫
K

Rk
−2k,zF (g1ki)dk = Rk

−2k,zF (g1i) = Rk
−2k,zF (zX).

Summarizing, we obtain∫
SL2(R)

Rk
−2k,zF (g1gi)ψ

0
M

(
−
√

2mX1(i), τ, gi
)
dg

= 8π
√
mvRk

−2k,zF (zX)

∫ ∞
0

cosh(2t) sinh(2t)Pk(cosh(2t))e−4πmv sinh2(2t)dt

= 2π
√
mvRk

−2k,zF (zX)

∫ ∞
0

Pk

(√
1 + t

)
e−4πmvxdx,

where we replaced x = sinh2(2t) in the last step. The latter integral is a Laplace
transform, which is computed in equation (7) on page 180 in [EMOT54], so the last line
equals

π
√
mvRk

−2k,zF (zX)(4πmv)−5/4W1/4,k/2+1/4(4πmv)e2πmv

=
1

2
√
m
Rk
−2k,zF (zX)Wk/2+3/4,1/2(4πmv)e2πmv,

where Ws,k(y) = y−k/2Wk/2,s−1/2(y) is the W-Whittaker function. Using (13.1.33) and
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3 The Millson Theta Lift

(13.4.23) in [AS84] it is easy to show that

L
k/2
1/2

(
W k

2
+ 3

4
, 1
2
(4πmv)e(mu)

)
=

(
1

4πm

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

)
W k

2
+ 3

4
, 1
2
−k(4πmv)e(mu)

=

(
1

4πm

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

)
e2πimτ .

Taking everything together, we finally obtain that C(m,h, v) equals

1

2
√
m

(
1

4πm

)k/2 k/2−1∏
j=0

(
k + 1

2
+ j

)(
j − k

2

)(
tr+
Rk−2kF

(m,h)− tr+
Rk−2kF

(m,−h)
)
.

Note that
tr+
Rk−2kF

(m,−h) = tr−
Rk−2kF

(m,h).

Combining this with Theorem 3.2.3 we obtain the formula for the coefficients of positive
index.

3.3.2 Fourier coefficients of negative index

The computation of the Fourier coefficients of negative index was conducted in joint
work with Alfes-Neumann.

For m < 0 the (m,h)-th coefficient of IM(F, τ) is given by

C(m,h, v) =
∑

X∈Γ\Lm,h

lim
T→∞

∫
MT

F (z)
∑

γ∈ΓX\Γ

ψ0
M,k(γX, τ, z)y−2kdµ(z),

where
ψ0
M,k(X, τ, z) = vk+1pX(z)Qk

X(z̄)e−2πvR(X,z).

We compute the individual summands for fixed X ∈ Lm,h.
The computation follows similar arguments as in the proof of Theorem 4.5 in [BF06].

First, a short calculation using the rules (2.4.2) shows that the function

η(X, τ, z) = Ckv
k+1Q−k−1

X (z)
∂k

∂vk
(
v−1e−2πvR(X,z)

)
, Ck =

√
N(2N)k

(−2π)k+1
, (3.3.2)

satisfies
ξ2k+2,zη(X, τ, z) = ψ0

M,k(X, τ, z).
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3.3 The Fourier expansion of the Millson lift

Writing e−2πvR(X,z) = v
∫∞

2πR(X,z)
e−vtdt and differentiating k times under the integral, we

can also rewrite η as

η(X, τ, z) = (−1)kCkQ
−k−1
X (z)Γ(k + 1, 2πvR(X, z)). (3.3.3)

Using Stokes’ theorem in the form given in Lemma 2.3.7, we obtain

lim
T→∞

∫
MT

F (z)
∑

γ∈ΓX\Γ

ψ0
M,k(γX, τ, z)y−2kdµ(z) (3.3.4)

= − lim
T→∞

∫
MT

ξ−2k,zF (z)
∑

γ∈ΓX\Γ

η(γX, τ, z)y2k+2dµ(z) (3.3.5)

− lim
T→∞

∫
∂MT

F (z)
∑

γ∈ΓX\Γ

η(γX, τ, z)dz. (3.3.6)

Since ξ−2k,zF is a cusp form, we can write the limit of the first integral on the right-hand
side as an integral over M .

The integral over M

We first compute the complex conjugate of the integral over M on the right-hand side.
Since Q(X) = m < 0 we can find some matrix g ∈ SL2(R) such that

X ′ := g−1X =

√
|m|
N

(
1 0
0 −1

)
.

Replacing z by gz and using the unfolding argument, we find∫
M

ξ−2k,zF (z)
∑

γ∈ΓX\Γ

η(γX, τ, z)y2k+2dµ(z) =

∫
ΓX′\H

ξ−2k,zFg(z)η(X ′, τ, z)y2k+2dµ(z),

where Fg = F |−2kg.

If |m|/N is not a square then ΓX is infinite cyclic and

ΓX′ = g−1ΓXg =

{
±
(
ε 0
0 ε−1

)n
: n ∈ Z

}
for some ε > 1. On the other hand, if |m|/N is a square then ΓX′ is trivial, so ΓX′\H = H.
Here we only explain the non-square case since the other case is very similar. As a
fundamental domain for ΓX′\H we can take the horizontal strip {z ∈ H : 1 ≤ y < ε2}.
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3 The Millson Theta Lift

Using the explicit formula

η(X ′, τ, z) = (−1)kCk

(
−2
√
|m|Nz̄

)−k−1

Γ

(
k + 1, 4π|m|v

(
x2

y2
+ 1

))
, (3.3.7)

and replacing x
y

by t in the integral over x, we find that the complex conjugate of (3.3.5)
equals

(−1)k+1Ckv
k+1

(−2
√
|m|N)k+1

∫ ∞
−∞

∫ ε2

1

(t+ i)k+1ykξ−2k,zFg(y(t+ i))dy
Γ (k + 1, 4π|m|v (t2 + 1))

(t2 + 1)k+1
dt.

The inner integral is the contour integral of the holomorphic function zkξ−2k,zFg(z) along
the line y(t + i), y ∈ (1, ε2). Using ξ−2k,zFg(ε

2z) = ε−2k−2ξ−2k,zFg(z) it is easily seen by
Cauchy’s theorem that the inner integral does in fact not depend on t. Thus the double
integral simplifies to

(−1)k+1Ckv
k+1ik+1

(−2
√
|m|N)k+1

∫ ε2

1

ξ−2k,zFg(iy)ykdy ·
∫ ∞
−∞

Γ (k + 1, 4π|m|v (t2 + 1))

(t2 + 1)k+1
dt.

Plugging in the definition of the incomplete Gamma function, interchanging the order
of integration and using

∫∞
−∞ e

−t2dt =
√
π, we compute∫ ∞

−∞

Γ (k + 1, 4π|m|v (t2 + 1))

(t2 + 1)k+1
dt =

√
πΓ(1/2 + k, 4π|m|v).

If we put everything together and recall the definition of the cycle integral C(ξ−2k,zF,X),
we see that (3.3.5) equals

− 1

2(4π|m|)k+1/2
C(ξ−2k,zF,X)Γ(1/2 + k, 4π|m|v).

The boundary integral

We now consider the limit of the boundary integral in (3.3.6). By the definition of the
truncated curve MT we find

−
∫
∂MT

F (z)
∑

γ∈ΓX\Γ

η(γX, τ, z)dz =
∑

`∈Γ\ Iso(V )

∫ α`+iT

z=iT

F`(z)
∑

γ∈ΓX\Γ

η(σ−1
` γX, τ, z)dz,

where F` = F |−2kσ`. As in the proof of Lemma 5.2 in [BF06] we see that for each
isotropic line ` the integral vanishes in the limit unless X is orthogonal to ` and γ ∈ Γ`,
which can only happen if |m|/N is a square and ` = `X or ` = `−X . In particular, if
|m|/N is not a square, then the whole boundary integral vanishes. On the other hand,
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3.3 The Fourier expansion of the Millson lift

if |m|/N is a square, we obtain

−
∫
∂MT

F (z)
∑

γ∈ΓX\Γ

η(γX, τ, z)dz =

∫ α`X+iT

z=iT

F`X (z)
∑
γ∈Γ`X

η(σ−1
`X
γX, τ, z)dz, (3.3.8)

+

∫ α`−X+iT

z=iT

F`−X (z)
∑

γ∈Γ`−X

η(σ−1
`−X

γX, τ, z)dz.

We only compute the first integral on the right-hand side since the second one can be
computed in the same way if we first replace X by −X, which gives a factor (−1)k+1.

Let ` = `X for brevity. Choosing the orientation of V appropriately, we can assume
that

X ′ := σ−1
` .X =

√
|m|
N

(
1 −2r`
0 −1

)
for some r` ∈ Q. Then the first summand in (3.3.8) equals∫ α`+iT

z=iT

F`(z)
∑

γ∈σ−1
` Γ`σ`

η(γX ′, τ, z)dz.

Recall that σ−1
` Γ`σ` consists of the matrices

(
1 α`n
0 1

)
with n ∈ Z. Using the definition of

η, we see that the first summand in (3.3.8) equals∫ α`+iT

z=iT

F`(z)
∑
n∈Z

η

(√
|m|
N

(
1 2(α`n− r`)
0 −1

)
, τ, z

)
dz

=
Ckv

k+1

(−2
√
|m|N)k+1

∂k

∂vk
v−1e−4π|m|v

×
∫ α`+iT

z=iT

F`(z)
∑
n∈Z

(z + α`n− r`)−k−1e
−4π|m|v (x+α`n−r`)

2

y2 dz.

For a function g(t) on R we let ĝ(w) =
∫∞
−∞ g(t)e2πitwdt be its Fourier transform. Using

Poisson summation we can rewrite the inner sum as∑
n∈Z

(z + α`n− r`)−k−1e
−4π|m|v (x+α`n−r`)

2

y2

=
1

α`

∑
w∈ 1

α`
Z

e−2πiw(x−r`)
∫ ∞
−∞

(t+ iy)−k−1e
−4π|m|v t

2

y2 e2πiwtdt,

where we replaced t = (x + α`n − r`). The required Fourier transform is computed in
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3 The Millson Theta Lift

the next lemma. We let a = 2
√
π|m|v/y and b = y for brevity.

Lemma 3.3.5. For a, b 6= 0 and k ∈ Z, k ≥ 0, the Fourier transform of

hk(t) = (t+ ib)−k−1e−a
2t2

is given by

ĥk(w) = −i
k+1

k!
πea

2b2e2πbw

(
erfc(ab+ πw/a)

k∑
j=0

(
k

j

)
(2πw)k−j(−ia)jHj(iab)

+ e−(ab+πw/a)2 2√
π

k∑
j=1

(
k

j

)
(2πw)k−j(−a)j

j−1∑
`=0

(
j

`

)
i`H`(iab)Hj−`−1(ab+ πw/a)

)
,

where

erfc(x) =
2√
π

∫ ∞
x

e−u
2

du

is the standard complementary error function and

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

is the n-th Hermite polynomial.

Proof. Since

(t+ ib)−k−1e−a
2t2 =

ik

k!

(
∂k

∂bk
(t+ ib)−1

)
e−a

2t2 ,

the formula for ĥk follows from the one for ĥ0 and Leibniz’s rule. Thus it suffices to
prove that the Fourier transform of

h0(t) = (t+ ib)−1e−a
2t2 = (t− ib) e

−a2t2

t2 + b2

is given by
ĥ0(w) = −iπea2b2e2πbw erfc(ab+ πw/a).

Using the well known facts that the Fourier transforms of e−a
2t2 and 1

t2+b2
are given

by
√
π
a
e−π

2w2/a2
and π

b
e−2πb|w|, respectively, and that the Fourier transform of a product

of two functions is the convolution of the individual transforms, we see that the Fourier
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3.3 The Fourier expansion of the Millson lift

transform of f(t) = e−a
2t2

t2+b2
is given by

f̂(w) =
π3/2

ab

∫ ∞
−∞

e−π
2x2/a2

e−2πb|w−x|dx

=
π3/2

ab
e2πbw

∫ ∞
w

e−π
2x2/a2

e−2πbxdx+
π3/2

ab
e−2πbw

∫ ∞
−w

e−π
2x2/a2

e−2πbxdx

=
π

2b
ea

2b2
(
e2πbw erfc(ab+ πw/a) + e−2πbw erfc(ab− πw/a)

)
.

Since the Fourier transform of tf(t) is given by − i
2π

d
dw
f̂(w), we obtain

(̂tf)(w) = −iπ
2
ea

2b2
(
e2πbw erfc(ab+ πw/a)− e−2πbw erfc(ab− πw/a)

)
.

Using ĥ0 = (̂tf)− ibf̂ we get the stated formula.

Let a+
` (w) and a−` (w) denote the Fourier coefficients of F`. Using the above lemma

with a = 2
√
π|m|v/y and b = y, we find that the right-hand side of (3.3.8) is equal to

−Ckvk+1ik+1π

(−2
√
|m|N)k+1k!

∂k

∂vk
v−1 lim

T→∞

∑
w∈ 1

α`
Z

(a+
` (w) + a−` (w)Γ(1 + 2k, 4π|w|T ))e2πir`w

×
(

erfc
(

2
√
π|m|v + T

√
πw/(2

√
|m|v)

)
k∑
j=0

(
k

j

)
(2πw)k−j

(
−2i

√
π|m|v/T

)j
Hj

(
2i
√
π|m|v

)
+ e

−
(

2
√
π|m|v+T

√
πw/(2
√
|m|v)

)2 2√
π

k∑
j=1

(
k

j

)
(2πw)k−j

(
−2
√
π|m|v/T

)j
j−1∑
`=0

(
j

`

)
i`H`

(
2i
√
π|m|v

)
Hj−`−1

(
2
√
π|m|v + T

√
πw/(2

√
|m|v)

))
.

Note that erfc(x) = O(e−x
2
) as x → +∞ and limx→−∞ erfc(x) = 2. Further, the

incomplete Gamma function is of linear exponential decay.
For k = 0 the last three lines disappear (i.e., they have to replaced by 1), and the

summands for w > 0 vanish as T →∞. Thus all that remains in the limit is

− i

2
√
|m|

∑
w<0

a+
` (w)e2πir`w − i

4
√
|m|

a+
` (0) erfc(2

√
π|m|v),

in this case. Note that
√
π erfc(2

√
π|m|v) = Γ(1

2
, 4π|m|v).
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For k > 0 all summands for w ≥ 0 vanish in the limit. Further, the summands for
1 ≤ j ≤ k in the third row, and the two last rows vanish as T → ∞. Thus we are left
with

(−i)k+1

2
√
|m|

( √
N

4π
√
|m|

)k∑
w<0

a+
` (w)(4πw)ke2πir`w,

if k > 0. Here we used vk+1 ∂k

∂vk
v−1 = (−1)kk!.

3.3.3 Fourier coefficients of index 0

These coefficients were also computed jointly with Alfes-Neumann. We now want to
compute

C(0, h, v) = lim
T→∞

∫
MT

F (z)
∑

X∈L0,h

ψ0
M,k(X, τ, z)y−2kdµ(z),

where
L0,h = {X ∈ L+ h : Q(X) = 0}.

Note that the sum over X is now infinite. Further, we have ψ0
M,k(0, τ, z) = 0 so we can

leave out the summand for X = 0. The computation for Q(X) = 0 is quite similar to
the one for Q(X) < 0 above, so we skip some arguments. Using the function η(X, τ, z)
defined in (3.3.2) and Stokes’ theorem we get

C(0, h, v) = − lim
T→∞

∫
MT

ξ−2k,zF (z)
∑

X∈L0,h

X 6=0

η(X, τ, z)y2k+2dµ(z)

− lim
T→∞

∫
∂MT

F (z)
∑

X∈L0,h

X 6=0

η(X, τ, z)dz.

Since ξ−2k,zF is a cusp form, we can write the first integral on the right-hand side as an
integral over M .

For each isotropic line ` ∈ Iso(V ) we choose a positively oriented primitive vector
X` ∈ ` ∩ L. If ` ∩ (L + h) 6= ∅ we can fix some vector h` ∈ ` ∩ (L + h) and write
` ∩ (L+ h) = ZX` + h`. Note that σ−1

` (nX` + h`) =
(

0 nβ`+k`
0 0

)
for some k` ∈ Q.

We now parametrize the set L0,h \ {0} by the points nX` + h`, where ` runs through
all isotropic lines with ` ∩ (L+ h) 6= ∅ and n runs through Z such that nβ` + k` 6= 0.
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The integral over M

Using the above parametrization for L0,h \{0} the integral over M in C(0, h, v) becomes

−
∑

`∈Γ\ Iso(V )
`∩(L+h)6=∅

∫
M

ξ−2k,zF (z)
∑
n∈Z

nβ`+k` 6=0

∑
γ∈Γ`\Γ

η(γ(nX` + h`), τ, z)y
2k+2dµ(z).

Replacing z by σ`z and using the unfolding argument, we get

−
∑

`∈Γ\ Iso(V )
`∩(L+h) 6=∅

∫ ∞
0

∫ α`

0

ξ−2k,zF`(z)
∑
n∈Z

nβ`+k` 6=0

η

((
0 nβ` + k`
0 0

)
, τ, z

)
y2k+2dx dy

y2

where F` = F |−2kσ`. Explicitly, we have

η

((
0 nβ` + k`
0 0

)
, τ, z

)
= Ckv

k+1(−N(nβ` + k`))
−k−1 ∂

k

∂vk

(
v−1e

−πvN (nβ`+k`)
2

y2

)
,

(3.3.9)

which is independent of x. Therefore the integral over x picks out the constant coefficient
of ξ−2k,zF`, which is 0 since ξ−2k,zF` is a cusp form. Thus the integral over M vanishes.

The boundary integral

Plugging in the definition of the truncated curve (2.2.1), the boundary integral is given
by

lim
T→∞

∑
`∈Γ\ Iso(V )
`∩(L+h) 6=∅

∑
`′∈Γ\ Iso(V )

∫ α`′+iT

z=iT

F`′(z)
∑
n∈Z

nβ`+k` 6=0

∑
γ∈Γ`\Γ

η

(
σ−1
`′ γσ`

(
0 nβ` + k`
0 0

)
, τ, z

)
dz.

It can be seen as in the proof of Lemma 5.2 in [BF06] that in the limit only the contri-
butions for `′ = ` and γ ∈ Γ` remain, so we get

lim
T→∞

∑
`∈Γ\ Iso(V )
`∩(L+h)6=∅

∫ α`+iT

z=iT

F`(z)
∑
n∈Z

nβ`+k` 6=0

η

((
0 nβ` + k`
0 0

)
, τ, z

)
dz.

Using the explicit form (3.3.9) of η and carrying out the integral this becomes

Ckv
k+1

(−N)k+1

∂k

∂vk
v−1

∑
`∈Γ\ Iso(V )
`∩(L+h)6=∅

α`a
+
` (0) lim

T→∞

∑
n∈Z

nβ`+k` 6=0

(nβ` + k`)
−k−1e−πvN

(nβ`+k`)
2

T2 .
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If k`/β` ∈ Z, we can shift the summation index by k`/β` and see that the terms with n
and −n cancel if k is even and add up if k is odd, so in this case the limit of the sum
over n is 0 if k is even or 2β−k−1

` ζ(k + 1) if k is odd. On the other hand, k`/β` ∈ Z is
only possible if h` is an integral multiple of X` and hence in L, i.e. this only happens for
h = 0 modL.

Now let h 6= 0 modL and thus k`/β` /∈ Z. For k > 0 we can interchange the sum
and the limit by the dominated convergence theorem. Splitting the sum into n ≥ 0 and
n < 0 and replacing n by 1− n in the second part, we obtain

lim
T→∞

∑
n∈Z

(nβ` + k`)
−k−1e−πvN

(nβ`+k`)
2

T2

= β−k−1
`

(
ζ(k + 1, k`/β`) + (−1)k+1ζ(k + 1, 1− k`/β`)

)
,

where ζ(s, ρ) =
∑

n≥0(n + ρ)−s denotes the Hurwitz zeta function. For k = 0 we first
reorder the sum as∑

n∈Z

(nβ` + k`)
−k−1e−πNv

(nβ`+k`)
2

T2 = k−1
` e−πvN

k2
`
T2

+ β−1
`

∑
n>0

(
(n+ k`/β`)

−1e−πvN
(nβ`+k`)

2

T2 + (−n+ k`/β`)
−1e−πvN

(−nβ`+k`)
2

T2

)
.

Now using dominated convergence again, this goes to

β−1
`

(∑
n>0

(
(n+ k`/β`)

−1 + (−n+ k`/β`)
−1
)

+ (k`/β`)
−1

)
= β−1

` π cot(πk`/β`)

as T → ∞. Note that Ckv
k+1

(−N)k+1
∂k

∂vk
v−1 = (−1)kk!

2
√
Nπk+1 . This completes the calculation of

C(0, h, v), and of the Fourier expansion of the Millson lift.

3.4 The twisted Millson theta lift

Using the twisted theta functions from Section 2.4.4 we construct twisted analogs of
the lifts considered above. Throughout this section, we let Γ = Γ0(N) and we let L be
the special lattice from Section 2.2.5 corresponding to Γ0(N). Further, we let ∆ be a
fundamental discriminant. Recall from Section 2.4.4 that L(∆) denotes be the lattice ∆L
with the quadratic form Q∆(X) = 1

|∆|Q(X). Its discriminant group is L′/L(∆). We let

Γ(∆) be the subgroup of Γ which acts on L(∆) and fixes the classes of L′/L(∆). Further,
recall that ρ̃L denotes ρL if ∆ > 0 and ρ∗L if ∆ < 0. Throughout, a superscript (∆)
indicates that the corresponding quantity or object is taken with respect to L(∆) and
Γ(∆).
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3.4 The twisted Millson theta lift

For a harmonic weak Maass form F ∈ H+
−2k(Γ0(N)) we define the twisted Millson

theta lift by

IM∆,r(F, τ) = lim
T→∞

∫
MT

F (z)ΘM,k,∆,r(τ, z)y−2kdµ(z),

where

ΘM,k,∆,r(τ, z) =
∑

h∈L′/L

〈
ψ∆,r(eh),Θ

(∆)
M,k(τ, z)

〉
eh

denotes the (∆, r)-th twisted Millson theta function, compare Section 2.4.4. Analogously
we obtain the twisted Shintani lift ISh∆,r(F, τ). The twisted theta lifts have the same
mapping properties as their untwisted versions (see Theorem 3.1.3), with ρL replaced
by ρ̃L. Further, we obtain the following generalization of Proposition 3.1.2.

Proposition 3.4.1. For F ∈ H+
0 (Γ) we have

ξ1/2,τ (I
M
∆,r(F, τ)) = −

√
|∆|

2
√
N
ISh∆,r(ξ0,zF, τ) +

1

2N

∑
`∈Γ\ Iso(V )

ε`a
+
` (0)Θ`,1,∆,r(τ),

and for k ∈ Z>0 and F ∈ H+
−2k(Γ) we have

ξ1/2−k,τ (I
M
∆,r(F, τ)) = −

√
|∆|

2
√
N
ISh∆,r(ξ−2k,zF, τ).

Proof. Let us assume k = 0 for simplicity. Following the approach of [AE13] we write

IM∆,r(F, τ) =
1

[Γ : Γ(∆)]

∑
h∈L′/L

〈
ψ∆,r(eh), IM (F, τ, L(∆),Γ(∆))

〉
eh, (3.4.1)

where

IM
(
F, τ, L(∆),Γ(∆)

)
= lim

T→∞

∫
M

(∆)
T

F (z)Θ
(∆)
M,k(τ, z)dµ(z)

is the untwisted Millson theta lift for the lattice L(∆) and M
(∆)
T is the truncated version

of the curve M (∆) = Γ(∆)\H. By Proposition 3.1.2 we have

ξ1/2,τ

(
IM
(
F, τ, L(∆),Γ(∆)

))
= −

√
|∆|

2
√
N
ISh

(
ξ0,zF, τ, L

(∆),Γ(∆)
)

+
|∆|
2N

∑
`∈Γ(∆)\ Iso(V )

ε
(∆)
` a+

` (0)Θ
(∆)
`,1 (τ).

Now a short calculation, using

ε
(∆)
` =

[Γ` : (Γ(∆))`]

|∆|
ε`,
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3 The Millson Theta Lift

the decomposition (3.4.1) and the analogous decomposition for ISh∆,r(ξ0,zF, τ), yields the
result.

This relation gives an interesting criterion for the non-vanishing of the twisted L-
function of a newform at the critical point. The corresponding result for square free N
and odd k was proven in the thesis [Alf15].

Theorem 3.4.2. Let F ∈ H+
−2k(Γ), with vanishing constant terms at all cusps if k = 0,

such that G = ξ−2kF ∈ S2k+2(Γ) is a normalized newform. For ∆ < 0 with (∆, N) = 1
the lift IM∆,r(F, τ) is weakly holomorphic if and only if L(G,χ∆, k + 1) = 0.

Proof. By the last proposition, IM∆,r(F, τ) is weakly holomorphic if and only if the Shin-
tani lift ISh∆,r(G, τ) vanishes. Since G is a normalized newform, Corollary 2 in Section II.4.
of [GKZ87] shows that the square of the absolute value of the D-th coefficient (D < 0
with (D,N) = 1 a fundamental discriminant) of ISh∆,r(G, τ) (viewed as a Jacobi form) is
up to non-zero factors given by L(G,χ∆, k + 1)L(G,χD, k + 1). If L(G,χ∆, k + 1) = 0,
then all fundamental coefficients of ISh∆,r(G, τ) vanish, which implies ISh∆,r(G, τ) = 0. Con-
versely, the vanishing of the Shintani lift in particular means the vanishing of its ∆-th
coefficient, i.e. L(G,χ∆, k + 1)2 = 0. This completes the proof.

To describe the Fourier coefficients of the twisted Millson lift we introduce twisted
traces of CM values and cycle integrals.

For h ∈ L′/L and m ∈ Q>0 with m ≡ sgn(∆)Q(h) (Z) we define the twisted trace of
a Γ-invariant function F by

tr+
F,∆,r(m,h) =

∑
X∈Γ\L+

|∆|m,rh

χ∆(X)∣∣ΓX∣∣ F (zX),

and tr−F,∆,r(m,h) accordingly.
For h ∈ L′/L and m ∈ Q<0 with m ≡ sgn(∆)Q(h) (Z) we define the twisted trace of

a cusp form G ∈ S2k+2(Γ) by

trF,∆,r(m,h) =
∑

X∈Γ\L|∆|m,rh

χ∆(X)C(G,X),

with the cycle integral C(G,X) defined in Section 3.3.
Finally, for m = −N |∆|d2 < 0 with d ∈ Q>0 we define the twisted complementary

trace by

trcF,∆,r(−N |∆|d2, h) =
∑

X∈Γ\L−N|∆|2d2,rh

χ∆(X)

( ∑
w∈Q<0

a+
`X

(w)(4πw)ke2πiRe(c(X))w

+ (−1)k+1
∑
w∈Q<0

a+
`−X

(w)(4πw)ke2πiRe(c(−X))w

)
.
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3.4 The twisted Millson theta lift

Theorem 3.4.3. Let k ∈ Z≥0 and let F ∈ H+
−2k(Γ). For k > 0 the h-th component of

IM∆,r(F, τ) is given by

∑
m>0

1

2
√
m

( √
N

4π
√
|∆|m

)k (
tr+
Rk−2kF,∆,r

(m,h) + (−1)k+1 tr−
Rk−2kF,∆,r

(m,h)
)
qm

+
∑
d>0

1

2i
√
N |∆|d

(
1

4πi|∆|d

)k
trcF,∆,r(−N |∆|d2, h)q−N |∆|d

2

+

√
|∆|(−1)kk!

2
√
Nπk+1

∑
`∈Γ\ Iso(V )
`∩(L+rh) 6=∅

a+
` (0)

α`

βk+1
`

dk+1
`

×
( ∑

n>0
n≡m`(d`)

χ∆(n)

ns+1
+ (−1)k+1 sgn(∆)

∑
n>0

n≡−m`(d`)

χ∆(n)

ns+1

)∣∣∣∣
s=k

−
∑
m<0

1

2(4π|m|)k+1/2|∆|k/2
trξ−2kF,∆,r(m,h)Γ (1/2 + k, 4π|m|v) qm,

where m`, d` ∈ Z≥0 are defined by (m`, d`) = 1 and k`/β` = m`/d`.

For k = 0 the h-th component of IM∆,r(F, τ) is given by the same formula as above but
with the additional non-holomorphic terms∑
d>0

1

4i
√
πN |∆|d

∑
X∈Γ\L−N|∆|d2,rh

χ∆(X)
(
a+
`X

(0)− a+
`−X

(0)
)
Γ
(
1/2, 4πN |∆|d2v

)
q−N |∆|d

2

.

Proof. As in the proof of Proposition 3.4.1 we write

IM∆,r(F, τ) =
1

[Γ : Γ(∆)]

∑
h∈L′/L

〈
ψ∆,r(eh), IM (F, τ, L(∆),Γ(∆))

〉
eh.

We see that the coefficients of the twisted lift can be obtained from the coefficients of
the untwisted lift. The twisting of the coefficients of positive and negative index is quite
straightforward and can be done as in the proof of Theorem 5.5. in [AE13].

We sketch the twisting of the constant coefficient. For h ∈ L′/L with Q(h) ≡ 0(Z)
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3 The Millson Theta Lift

the (0, h)−th coefficient of IM∆,r(F, τ) is given by√
|∆|(−1)kk!

2
√
Nπk+1

1

[Γ : Γ(∆)]

∑
δ∈L′/L(∆)

π(δ)=rh
Q∆(δ)≡0(Z)

χ∆(δ)

∑
`∈Γ(∆)\ Iso(V )
`∩(∆L+δ)6=∅

a+
` (0)

α
(∆)
`(

β
(∆)
`

)k+1

(
ζ
(
s, k

(∆)
` /β

(∆)
`

)
+ (−1)k+1ζ

(
s, 1− k(∆)

` /β
(∆)
`

)) ∣∣
s=k+1

,

It is easy to see that β
(∆)
` = |∆|β` and α

(∆)
` = [Γ` : (Γ(∆))`]α`, but k

(∆)
` is a bit more

complicated:
Let X` ∈ ` ∩ L be a positively oriented primitive generator of `. If ` ∩ (∆L + δ) 6= ∅

with π(δ) = rh then also ` ∩ (L + rh) 6= ∅. For a fixed isotropic line `, a system
of representatives for the elements δ ∈ L′/L(∆) with π(δ) = rh,Q∆(δ) ≡ 0(Z) and
` ∩ (∆L + δ) 6= ∅ is given by the vectors nX` + (rh)` with n running modulo |∆| and

some (rh)` ∈ ` ∩ (L + rh). In particular, we have k
(∆)
` /β

(∆)
` = n/|∆| + m`/|∆|d`.

Using the assumption that ∆ is a fundamental discriminant it is not hard to show that
(∆, d`) = 1, χ∆(d`) = 1, and χ∆(nX` + (rh)`) = χ∆(nd` + m`). Putting everything
together, we obtain the twisted constant coefficient.

In the same way, we obtain the Fourier expansion of the (∆, r)-th Shintani lift:

Theorem 3.4.4. Let k ∈ Z≥0 and G ∈ S2k+2(Γ). Then the h-th component of ISh∆,r(G, τ)
is given by

ISh∆,r(G, τ)h = −
√
N√
|∆|

∑
m>0

1

|∆|k/2
trG,∆,r(−m,h)qm.

Remark 3.4.5. Let N = 1. In this case the twisted Millson theta function vanishes
identically if (−1)k∆ > 0, which easily follows from replacing X by −X in the sum.
On the other hand, by Theorem 2.3.15 for (−1)k∆ < 0 the map f0(τ)e0 + f1(τ)e1 7→
f0(4τ) + f1(4τ) defines an isomorphism of H+

1/2−k,ρ̃L with the subspace of H+
1/2−k(Γ0(4))

of scalar valued harmonic weak Maass forms satisfying the Kohnen plus space condition.
Using this identification we can derive the results stated in the introduction from the
theorems in this section. Since ∆ ≡ r2(4), the value of r mod 2 is already determined
by ∆, so we can drop it from the notation. The formula for the coefficients of positive
index of IM∆ follows from tr−

Rk−2kF,∆
(d) = sgn(∆) tr+

Rk−2kF,∆
(d), and the formula for the

principal part is obtained by rewriting the twisted complementary trace as described in
[AE13, Proposition 5.7.].

Finally, we compute a nicer closed formula for the twisted lift of the constant function
1 by taking the residue at s = 0 of the lift of a non-holomorphic Eisenstein series E0(z, s).
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3.4 The twisted Millson theta lift

The method used here appeared in many places in the literature, for example in [BF06,
Section 7.1], [AE13, Section 6.1], and [Alf15, Section 4.2], and it can also be applied to
compute the lift of non-holomorphic Maass Poincaré series.

The Eisenstein series E0(z, s) is given by

E0(z, s) =
1

2
ζ∗(2s)

∑
γ∈Γ∞\Γ0(N)

(Im(γz))s,

where ζ∗(s) = π−s/2Γ
(
s
2

)
ζ(s) denotes the completed Riemann Zeta function. Here,

Γ∞ = ( 1 Z
0 1 ). The Eisenstein series E0(z, s) converges for Re(s) > 1 and has a meromor-

phic continuation to C with a simple pole at s = 1 with residue π/(6vol(Γ0(N)\H)).

Moreover, we define the following vector valued Eisenstein series of weight 1/2,

E1/2,ρ̃K (τ, s) =
1

2

∑
γ∈Γ̃∞\Mp2(Z)

(v
s
2 e0)|1/2,ρ̃Kγ.

Here, K is the sublattice Z ( 1 0
0 −1 ) of L and Γ̃∞ is the subgroup of Mp2(Z) generated

by T = (( 1 1
0 1 ) , 1). Its dual lattice is K ′ = 1

2N
K. Since K ′/K ∼= L′/L we can view

E1/2,ρ̃K (τ, s) as a modular form for ρ̃L. For ∆ > 0, i.e. ρ̃K = ρK , we replace γ by Zγ in
the sum, where Z = (−1, i) ∈ Mp2(Z), and use that e0|1/2,ρKZ = −e0, to see that the
Eisenstein series vanishes identically in this case.

For ∆ < 0 let χ∆(n) =
(

∆
n

)
and let

Λ (χ∆, s) =

(
π

|∆|

)−(s+1)/2

Γ((s+ 1)/2)
∑
n≥1

χ∆(n)n−s

be the completed Dirichlet L-series associated with χ∆.

Theorem 3.4.6. For Re(s) > 1 we have IM∆,r(E0(z, s), τ) = 0 if ∆ > 0, and

IM∆,r(E0(z, s), τ) =
1

2
√
|∆|

ζ∗(2s)N
1
2
− s

2 Λ (χ∆, s) E1/2,ρ∗K
(τ, s),

if ∆ < 0.

Proof. The proof follows the one in [BF06, Theorem 7.1, Corollary 7.2] and [AE13,
Theorem 6.1]. Using the standard unfolding trick we obtain

IM∆,r(E0(z, s), τ) = ζ∗(2s)

∫
Γ∞\H

ΘM(τ, z)ysdµ(z).

We identify K ′/K ∼= Z/2NZ with quadratic form Q(b) = −b2/4N modZ. Then by
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3 The Millson Theta Lift

[Höv12, Satz 2.22] this equals

− ζ∗(2s) Nε̄

2
√
|∆|i

∑
n≥1

n

(
∆

n

) ∑
γ∈Γ̃∞\Mp2(Z)[

1

v1/2

∫ ∞
y=0

ys exp

(
−Nπn

2y2

|∆| v

)
dy ·

∫ 1

x=0

∑
b∈Z

e
(
− |∆| b2τ̄ /4N + bnx

)
erbdx

]∣∣∣∣
1/2,ρ̃K

γ,

where ε = 1 if ∆ > 0 and ε = i if ∆ < 0. Note that, compared to the formula in [Höv12],
we get an additional factor |∆|−1/2 due to our different normalization of pz(X) in the
twisted case. The integral over x equals e0 and the one over y equals

1

2
√
|∆|

Γ

(
s

2
+

1

2

)
(|∆| v)

s
2

+ 1
2 (Nπ)−

s
2
− 1

2n−s−1.

Thus, we have

IM∆,r(E0(z, s), τ) = −ζ∗(2s)N−
s
2

+ 1
2 Γ

(
s+ 1

2

)
ε̄

2
√
|∆|i
|∆|

s+1
2 π−

s+1
2

×

(∑
n≥1

(
∆

n

)
n−s

)1

2

∑
γ∈Γ̃∞\Mp2(Z)

(v
s
2 e0)|1/2,ρ̃Kγ

 .

For ∆ > 0 the Eisenstein series vanishes identically, and for ∆ < 0 we plug in ε = i and
find

IM∆,r(E0(z, s), τ) =
1

2
√
|∆|

ζ∗(2s)N
1
2
− s

2 Λ (χ∆, s) E1/2,ρK (τ, s).

This completes the proof.

We now take residues at s = 1 in Theorem 3.4.6 to compute the lift of the constant
function.

Lemma 3.4.7. The residue of E1/2,ρ∗K
(τ, s) at s = 1 is given by

2

vol(Γ0(N)\H)

∑
`∈Γ0(N)\Iso(V )

ε`√
N

Θ`,0(τ) ∈M1/2,ρ∗L
.

Proof. Repeating the arguments in [BFI15, Section 5.5.1] for higher level N , we see that
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3.5 Extensions of the Millson and the Shintani theta lift

the residue of N
1
2
− s

2
πζ∗(s)

12ζ∗(2s−1)
E1/2,ρ∗K

(τ, s) at s = 1 is given by

∑
`∈Γ0(N)\Iso(V )

B`(1)ε`√
N

Θ`,0(τ),

where B`(s) is the function appearing in the constant coefficient A`(s)y
s + B`(s)y

1−s

of the Fourier expansion of ζ∗(2)
ζ∗(2s)ζ∗(2s−1)

E0(τ, s) at the cusp `. Let us write Ã`(s)y
s +

B̃`(s)y
1−s for the constant coefficient of E0(τ, s) at the cusp `. Using the well known

fact that B̃`(s) has residue π/(6vol(Γ0(N)\H)) at s = 1, independently of `, and the

expansion ζ∗(2)
ζ∗(2s)ζ∗(2s−1)

= 2(s− 1) +O((s− 1)2), we obtain

B`(1) =
π

3vol(Γ0(N)\H)
.

Finally, using
( ζ∗(s)
ζ∗(2s−1)

)
|s=1 = 2, we get the stated formula.

Proposition 3.4.8. For ∆ > 0 we have IM∆,r(1, τ) = 0, and for ∆ < 0 we have

IM∆,r(1, τ) =
Λ(χ∆, 1)√
N |∆|

∑
`∈Γ0(N)\ Iso(V )

ε`Θ`,0(τ).

In both cases we have IM∆,r(1, τ) ∈M1/2,ρ̃L.

3.5 Extensions of the Millson and the Shintani theta lift

The Millson and the Shintani theta lifts can be generalized to the full spaces of harmonic
Maass forms H−2k(Γ) and H2k+2(Γ), respectively. Since the necessary computations
become even more technical, we only sketch the arguments. Further, for simplicity we
restrict to the space H0

−2k(Γ) consisting of harmonic Maass forms whose coefficients
a−` (0) in the non-holomorphic parts of the input at all cusps vanish. The extension of
the Shintani lift to harmonic Maass forms will be the topic of upcoming joint work with
Alfes-Neumann [ANS17].

Concerning the regularization, the proof of Proposition 3.1.1 still goes through, so the
Millson lift of F ∈ H0

−2k(Γ) converges to a harmonic function transforming like a modular
form of weight 1/2 − k for ρL. Similarly, the Shintani lift of a harmonic Maass forms
G ∈ H0

2k+2(Γ) can be regularized as in [BFI15], Definition 5.6, and yields a harmonic
function transforming of weight 3/2+k for ρ∗L. The relation between the Millson and the
Shintani theta lift given in Proposition 3.1.2 still holds for F ∈ H0

−2k(Γ), which can be
seen by exactly the same proof as for F ∈ H+

−2k(Γ). Additionally, we have the ‘converse’
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3 The Millson Theta Lift

relation

ξ3/2+k,τI
Sh(G, τ) = −

√
N

2
IM(ξ2k+2,zG, τ).

In particular, this means that the Shintani lift of a harmonic Maass form G ∈ H0
2k+2(Γ)

produces a ξ3/2+k-preimage of the Millson lift of ξ2k+2G. For example, for N = 1 and
k = 0 one can use it to construct ξ3/2-preimages of the weakly holomorphic modular

forms fd = q−d +O(q) ∈M !,+
1/2(Γ0(4)) by applying twisted Shintani lifts to a ξ2-preimage

of J = j − 744.
The computation of the Fourier expansion of IM(F, τ) for F ∈ H0

−2k(Γ) can be done
in a similar way as before, but we have to be careful with the main integral in the
computation of the coefficients of negative index since ξ−2kF need no longer be a cusp
form. However, it might be better to adapt the more conceptual method of [BFI15],
which in our case relies on the existence of a ∆k-preimage of the Millson Schwartz
function and Stokes’ theorem, as we now briefly explain. Using the rules (2.4.2), a short
calculation shows that for QX(z) 6= 0 the function

µ(X, τ, z) = −Q
k
X(z) sgn(pX(z))√

2(2π)k+1

√
π

2

∫ ∞
2πv

e2Q(X)wwk+1/2 erfc
(
|pX(z)|

√
w/2

) dw
w

satisfies

ξ−2k,zµ(X, τ, z) =
Nk+1/2

2πk+1Qk+1
X (z)

Γ (k + 1, 2πvR(X, z))

and
∆−2k,zµ(X, τ, z) = ψ0

M(X, τ, z).

Note that ξ−2k,zµ(X, τ, z) equals −η(X, τ, z), which is the function used for the calcula-
tion of the Fourier coefficients of the Millson lift of negative index. In the computation
of the Fourier coefficients, we can now essentially just shift ∆k to F in the theta integral
by Stokes’ theorem (see Lemma 2.3.9), leaving us with two boundary integrals. They
are still difficult to compute, but can be handled in a similar way as in [BFI15], Sec-
tion 8. However, µ(X, τ, z) has a jump singularity along the geodesic cX if Q(X) < 0,
and ξ−2k,zµ(X, τ, z) has a pole of order k + 1 at the CM point zX if Q(X) > 0, so in
order to apply Stokes’ theorem we first have to cut out small neighbourhoods around
these singularities from the truncated curve MT . Thus we obtain additional integrals
along the boundaries of these neighbourhoods, which yield the traces of CM values and
(regularized) cycle integrals appearing in the Fourier expansion of the lift. For the Shin-
tani lift, one can find a similar ∆k-preimage which makes it possible to generalize the
lift to the full space H2k+2(Γ), and which will be discussed in [ANS17].

The twisting of these extended lifts proceeds in the same way as before. We obtain
the following extension of (the twisted versions of) Proposition 3.1.2 and Theorem 3.1.3.
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3.6 Cycle integrals

Theorem 3.5.1. Let k ∈ Z≥0.

1. The Millson theta lift IM∆,r maps H0
−2k(Γ) to H1/2−k,ρ̃L.

2. The Shintani theta lift ISh∆,r maps H0
2k+2(Γ) to H3/2+k,ρ̃∗L

.

3. The relation between the Millson and the Shintani theta lift in Proposition 3.4.1
also holds for F ∈ H0

−2k(Γ).

3.6 Cycle integrals

We have seen above that the Fourier coefficients of negative index of the non-holomorphic
part of the Millson lift of a harmonic Maass form F ∈ H+

−2k(Γ) are given by traces of
cycle integrals of ξ−2kF . By Theorem 3.2.3 the Millson lift IM(F, τ) agrees (up to some
constant factor) with the lift ΛM(F, τ) constructed from the weight 0 Millson theta
function and iterated lowering and raising operators. It is possible to compute the
Fourier coefficients of negative index of ΛM(F, τ) in a similar way as we did for IM(F, τ)
above. It turns out that they are given by traces of cycle integrals of Rk+1

−2kF . We will
not give these calculations here, but, inspired by this observation, we will prove some
interesting identities between the cycle integrals of ξ−2kF and R2j+1

−2k F, j ≥ 0, in a more
direct way.

3.6.1 Closed geodesics

Let X ∈ V with Q(X) = m < 0 such that |m|/N is not a square in Q, i.e.,the stabilizer
ΓX is infinite cyclic and c(X) = ΓX\cX is a closed geodesic. Further, let G be some
smooth function that transforms like a modular form of weight 2k+ 2 under Γ for some
k ∈ Z. Recall the definition of the cycle integral

C(G,X) = (−2
√
|m|Ni)ki

∫ ε2

1

Gg(iy)ykdy,

where g ∈ SL2(R) is such that g−1Xg =
√
|m|/N ( 1 0

0 −1 ), ε > 1 is such that
(
ε 0
0 ε−1

)
generates the stabilizer of g−1Xg in g−1Γg, and Gg = G|2k+2g.

Proposition 3.6.1. Let X ∈ V with Q(X) = m < 0 such that |m|/N is not a square.
Let k ∈ Z and F ∈ H+

−2k(Γ). For all integers ` ≤ k we have

C(Rk−`+1
−2k F,X) =

1

(4|m|N)`
C(ξ−2`R

k−`
−2kF,X). (3.6.1)

Further, for ` ≤ k − 1 we have

C(Rk−`+1
−2k F,X) = 4|m|N(k − `)(k + `+ 1)C(Rk−`−1

−2k F,X). (3.6.2)
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3 The Millson Theta Lift

Proof. Plugging in the definition of the cycle integral, the left-hand side of (3.6.1) equals

(−2
√
|m|Ni)−`i

∫ ε2

1

(Rk−`+1
−2k Fg)(iy)y−`dy.

Since ` ≤ k we can split off the outermost raising operator R−2` = 2i ∂
∂z
−2`y−1 to obtain

(Rk−`+1
−2k Fg)(iy)y−` = 2i

(
∂

∂z
Rk−`
−2kFg

)
(iy)y−` − 2`(Rk−`

−2kFg)(iy)y−`−1.

Now we use ∂
∂z

= ∂
∂z̄
− i ∂

∂y
and apply the product rule to the ∂

∂y
-part to get

(Rk−`+1
−2k Fg)(iy)y−` = 2i

(
∂

∂z̄
Rk−`
−2kFg

)
(iy)y−` + 2

∂

∂y

(
(Rk−`
−2kFg)(iy)y−`

)
.

Note that we also used ( ∂
∂y
Rk−`
−2kFg)(iy) = ∂

∂y
((Rk−`

−2kFg)(iy)). The first summand on the
right-hand side equals

2i

(
∂

∂z̄
Rk−`
−2kFg

)
(iy)y−` = −(ξ−2`R

k−`
−2kFg)(iy)y`,

giving the right-hand side of (3.6.1). Further, the integral∫ ε2

1

∂

∂y

(
(Rk−`
−2kFg)(iy)y−`

)
dy = (Rk−`

−2kFg)(iε
2)ε−2` − (Rk−`

−2kFg)(i)

vanishes since (Rk−`
−2kFg)(iε

2)ε−2` = (Rk−`
−2kFg)|−2`

(
ε 0
0 ε−1

)
(i) and Rk−`

−2kFg transforms like
a modular form of weight −2` for g−1Γg. This completes the proof of (3.6.1).

The formula (3.6.2) easily follows from (3.6.1) if we use that

ξ−2`R
k−`
−2kF = (k − `)(k + `+ 1)y−2`−2Rk−`−1

−2k F

for all k ∈ Z, all integers ` ≤ k − 1 and F ∈ H+
−2k(Γ). This follows from Lemma 2.3.5 if

we write ξ−2` = y−2`−2L−2` and use the relation (2.3.3).

Corollary 3.6.2. Let X ∈ V with Q(X) = m < 0 such that |m|/N is not a square.
Further, let k ∈ Z≥0 and F ∈ H+

−2k(Γ). For j ∈ Z≥0 we have

C(R2j+1
−2k F,X) =

1

(4|m|N)k−j
j!(k − j)!(2k)!

k!(2k − 2j)!
C(ξ−2kF,X).

Proof. We use (3.6.1) with ` = k and then repeatedly apply (3.6.2).

As a we special case we obtain a generalization of Theorem 1.1. from [BGK14].
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3.6 Cycle integrals

Corollary 3.6.3. Let X ∈ V with Q(X) = m < 0 such that |m|/N is not a square.
Further, let k ∈ Z≥0 and F ∈ H+

−2k(Γ). For even k we have

C(Rk+1
−2kF,X) =

1

(4|m|N)k/2
((k

2
)!)2(2k)!

(k!)2
C(ξ−2kF,X),

and for odd k we have

C(Rk
−2kF,X) =

1

(4|m|N)(k+1)/2

(k−1
2

)!(k+1
2

)!(2k)!

(k + 1)!k!
C(ξ−2kF,X).

Moreover, we obtain the non-square part of Theorem 1.1 from [BGK15] which asserts
that the cycle integrals of the weight 2k + 2 weakly holomorphic modular forms

D2k+1F = −(4π)−(2k+1)R2k+1
−2k F

and ξ−2kF agree up to some constant.

Corollary 3.6.4. Let X ∈ V with Q(X) = m < 0 such that |m|/N is not a square. For
k ∈ Z≥0 and F ∈ H+

−2k(Γ) we have

C(D2k+1F,X) = − (2k)!

(4π)2k+1
C(ξ−2kF,X).

3.6.2 Infinite geodesics

Let X ∈ V with Q(X) = m < 0 such that |m|/N is a square in Q, i.e. the stabilizer ΓX
is trivial and c(X) = ΓX\cX is an infinite geodesic in Γ\H. Recall that for a cusp form
G ∈ S2k+2 the cycle integral is defined by

C(G,X) = (−2
√
|m|Ni)ki

∫ ∞
0

Gg(iy)ykdy,

where g ∈ SL2(R) is such that g−1Xg =
√
|m|/N ( 1 0

0 −1 ) and Gg = G|2k+2g.
We would like to prove similar identities as in the last section, but in general the

cycle integral of Rk−`
−2kF does not converge if the geodesic is infinite. If we start with the

(convergent) cycle integral of ξ−2kF and repeat the calculations of the last section, we
are led to suitable regularized cycle integrals of Rk−`

−2kF .
First, for F ∈ H+

−2k(Γ) we write

C(ξ−2kF,X) = (−2
√
|m|Ni)ki

(∫ ∞
1

ξ−2kFg(iy)ykdy + (−1)k+1

∫ ∞
1

ξ−2kFgS(iy)ykdy

)
,

with S = ( 0 −1
1 0 ), where we split the integral over (0,∞) at 1 and replaced y by 1/y in
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3 The Millson Theta Lift

the integral over (0, 1). Now we decompose Fg = F+
g + F−g and FgS = F+

gS + F−gS into
their holomorphic and non-holomorphic parts and use ξ−2kFg = ξ−2kF

−
g and ξ−2kFgS =

ξ−2kF
−
gS. Note that F−g and F−gS are rapidly decreasing at the cusp∞, but not necessarily

at 0, and this is the reason why we split the integral above. We have the following analog
of Proposition 3.6.1:

Proposition 3.6.5. Let X ∈ V with Q(X) = m < 0 such that |m|/N is a square. Let
k ∈ Z and F ∈ H+

−2k(Γ). For all integers ` ≤ k we have∫ ∞
1

Rk−`+1
−2k F−g (iy)y−`dy = −

∫ ∞
1

ξ−2`R
k−`
−2kF

−
g (iy)y`dy − 2Rk−`

−2kF
−
g (i).

Further, for ` ≤ k − 1 we have∫ ∞
1

Rk−`+1
−2k F−g (iy)y−`dy

= −(k − `)(k + `+ 1)

∫ ∞
1

Rk−`−1
−2k F−g (iy)y−`−2dy − 2Rk−`

−2kF
−
g (i).

The same formulas hold with g replaced by gS.

Proof. The computations are the same as in the proof of Proposition 3.6.1 if we replace
ε2 by ∞ and use the rapid decay of Rk−`

−2kF
−(iy) as y →∞.

A repeated application of the proposition leads to following definition: For every
integer j ≥ 0 we define the regularized cycle integral of R2j+1

−2k F by

Creg(R2j+1
−2k F,X) = (−2

√
|m|Ni)−k+2ji

×
( j∑

`=0

C`,j(R
2`
−2kF

−
g (i)) + (−1)k+1

j∑
`=0

C`,j(R
2`
−2kF

−
gS(i))

+

∫ ∞
1

R2j+1
−2k F

−
g (iy)y−k+2jdy + (−1)k+1

∫ ∞
1

R2j+1
−2k F

−
gS(iy)y−k+2jdy

)
,

where C`,j = 2(−1)`+j
∏j

t=`+1(2t)(2k − 2t+ 1). Note that

R2`
−2kF

−
g (i) + (−1)k+1R2`

−2kF
−
gS(i) = −R2`

−2kF
+
g (i)− (−1)k+1R2`

−2kF
+
gS(i),

so the second line above can also be understood as the part of the regularized cycle
integral coming from F+.

With this definition, we find

Creg(R−2kF,X) =
1

(4|m|N)k
C(ξ−2kF,X)
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3.6 Cycle integrals

and

Creg(R2j+1
−2k F,X) = 4|m|N(2j)(2k − 2j + 1)Creg(R2j−1

−2k F,X)

for j ≥ 1, and thus all the corollaries of the last section also hold for |m|/N being a
square.

Remark 3.6.6. For k = j = 0 and F ∈ H+
0 (Γ) the regularized cycle integral of R0F is

defined by

Creg(R0F,X) = 2iF−g (i)− 2iF−gS(i) + i

∫ ∞
1

R0F
−
g (iy)dy −

∫ ∞
1

R0FgS(iy)dy.

On the other hand, since R0F ∈ S!
2(Γ) is in fact a weakly holomorphic cusp form, there

is a regularized cycle integral studied in [BFK14],[BGK14] and [BGK15]. It is given by

Creg
BFK(R0F,X) =

[
i

∫ ∞
1

R0Fg(iy)e−ysdy

] ∣∣∣∣
s=0

−
[
i

∫ ∞
1

R0FgS(iy)e−ysdy

] ∣∣∣∣
s=0

,

where the expression on the right means that one has to take the value at s = 0 of the
analytic continuation of the integral. We want to compare the two regularizations. Let
us split Fg = F+

g + F−g . Due to the rapid decay of F−g , we can plug in s = 0 in the
integral over F−g . In the integral over F+

g , we insert the Fourier expansion F+
g (z) =∑

n a
+
g (n)e2πinz, apply R0 = 2i ∂

∂z
and obtain after a short calculation[

i

∫ ∞
1

R0F
+
g (iy)e−ysdy

]∣∣∣∣
s=0

=

[
− 4πi

∑
n6=0

na+
g (n)

2πn+ s
e−(2πn+s)

]∣∣∣∣
s=0

= −2iF+
g (i) + 2ia+

g (0).

Using F+
g (i)− F+

gS(i) = −F−g (i) + F−gS(i) we find

Creg(R0F,X) = Creg
BFK(R0F,X)− 2ia+

g (0) + 2ia+
gS(0).

Note that the regularized cycle integrals considered in [BFK14] are only studied for
weakly holomorphic cusp forms, and the analytic continuation of the integrals relies on
the particular shape of the Fourier expansion of such forms. For general k and j, the
function R2j+1

−2k F is not weakly holomorphic and has a somewhat complicated Fourier
expansion, so it is not clear that the regularization of [BFK14] works. It would be
interesting to investigate this problem in the future.

Finally, we remark that our regularized cycle integrals look very similar to the cycle
integrals of weight zero harmonic weak Maass forms given in [BFI15]. However, the
definitions do not overlap since we only consider cycle integrals of R`

−2kF for odd `.
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4 Applications of the Millson and the
Kudla-Millson Theta Lifts

Throughout this chapter, we let L be the lattice related to Γ0(N) from Section 2.2.5.
Recall that L′/L ∼= Z/2NZ with the quadratic form x 7→ −x2/4N . To simlify the
notation, we will not distinguish between elements h ∈ L′/L and residue classes in
Z/2NZ. Further, the norms Q(X) for X ∈ L′ have the form −D/4N where D ∈ Z is a
discriminant which is a square mod 4N , and the elements of L′ of norm Q(X) = −D/4N
correspond to integral binary quadratic forms QX of discriminant D.

4.1 Algebraic formulas for Ramanujan’s mock theta
functions

As an application of the Millson theta lift (for k = 0), we find finite algebraic formulas
for the coefficients of Ramanujan’s third order mock theta functions

f(q) = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

= 1 + q − 2q2 + 3q3 − 3q4 − 5q5 + 7q6 − 6q7 + . . .

and

ω(q) = 1 +
∞∑
n=1

q2n2+2n

(1− q)2(1− q3)2 · · · (1− q2n+1)2

= 1 + 2q + 3q2 + 4q3 + 6q4 + 8q5 + 10q6 + 14q7 + . . .

in terms of the traces of a single modular function. We obtain the following result.

Theorem 4.1.1. Consider the Γ0(6)-invariant weakly holomorphic modular function

F (z) = − 1

40
· E4(z) + 4E4(2z)− 9E4(3z)− 36E4(6z)

(η(z)η(2z)η(3z)η(6z))2
(4.1.1)

= q−1 − 4− 83q − 296q2 + . . . , (4.1.2)
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where E4 denotes the normalized Eisenstein series of weight 4 for SL2(Z) and η =
q1/24

∏∞
n=1(1− qn) is the Dedekind eta function.

1. For n ≥ 1 the coefficients af (n) of f(q) are given by

af (n) = − 1√
24n− 1

Im

(
tr+
F

(
1− 24n

24
, 1

))
.

2. For n ≥ 1 the coefficients aω(n) of ω(q) are given by

aω(n) =



1

4
√

24n+1
2
− 4

Im

(
tr+
F

(
4− 24n+1

2

24
, 2

))
, n odd,

1

4
√

24(n
2

+ 1)− 16
Im

(
tr+
F

(
16− 24

(
n
2

+ 1
)

24
, 4

))
, n even.

Remark 4.1.2. 1. The theorem extends results of Alfes-Neumann (see the example
after Theorem 1.3 in [Alf14]), who gave similar formulas for the coefficients af (n)
with 1 − 24n being a fundamental discriminant, by looking at the Kudla-Millson
theta lift of F and employing a duality result between the Millson and the Kudla-
Millson lift.

2. Using the Kudla-Millson theta lift, Ahlgren and Andersen [AA16] gave a formula
for the smallest parts function in terms of traces of a modular function. The
coefficients of Ramanujan’s mock theta functions are related to partitions as well.
For example, af (n) is the number of partitions of n with even rank minus the
number with odd rank, where the rank of a partition is its largest part minus the
number of parts.

3. One of the main ingredients in the proof is Zwegers’ [Zwe01] realization of the
mock theta functions f(q) and ω(q) as the holomorphic parts of the components
of a vector valued harmonic Maass form. Thus the same idea works for other
mock theta functions as well, for example for the order 5 and order 7 mock theta
functions treated in Zwegers’ thesis [Zwe02]. These cases have been treated very
recently by Jennifer Kupka in her Master’s thesis [Kup17].

4. We checked the above formulas numerically using Sage [Dev11].

Example 4.1.3. We illustrate our formulas by computing aω(1) = 2. A system of
representatives of the Γ0(6)-classes of positive definite forms ax2 + bxy + cy2 with 6 | c,
b ≡ 2(12) and discriminant −20 is given by the two forms

Q1 = 5x2 + 10xy + 6y2, Q2 = 7x2 + 34xy + 42y2,
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and the corresponding CM-points are

zQ1 =
10 + i

√
20

12
, zQ2 =

34 + i
√

20

84
.

Plugging these values into the Fourier expansion of F , we find (using Sage [Dev11])

F (zQ1) = F (zQ2) = i · 17.888543820000.

Thus we obtain

aω(1) =
1

4
√

20
· 2 · 17.888543820000 = 2.000000000000.

Proof of Theorem 4.1.1. Zwegers [Zwe01] showed that the function

(q−
1
24f(q), 2q

1
3ω(q

1
2 ), 2q

1
3ω(−q

1
2 ))T

is the holomorphic part of a vector valued harmonic Maass form H = (h0, h1, h2)T ,
transforming as

H(τ + 1) =

ζ−1
24 0 0
0 0 ζ3

0 ζ3 0

H(τ), H

(
−1

τ

)
=
√
−iτ

0 1 0
1 0 0
0 0 −1

H(τ).

Further, ξ1/2H is a vector consisting of cuspidal unary theta functions of weight 3/2.

One can check that

H̃ = (0, h0, h2 − h1, 0,−h1 − h2,−h0, 0, h0, h1 + h2, 0, h1 − h2,−h0)T

is a vector valued harmonic Maass form of weight 1/2 for the Weil representation ρL,
compare [BO10b], Lemma 8.1. We see that its principal part is given by

q−1/24(e1 − e5 + e7 − e11).

The function
(η(z)η(2z)η(3z)η(6z))2

in the denominator of F is a cusp form of weight 4 for Γ0(6) which is invariant under all
Atkin-Lehner involutions W 6

d for d | 6, and the numerator of F equals

E4|(W 6
1 +W 6

2 −W 6
3 −W 6

6 ).

Thus F is an eigenfunction of all Atkin-Lehner involutions, with eigenvalue 1 for W 6
1 and

W 6
2 , and eigenvalue −1 for W 6

3 and W 6
6 . In particular, the Fourier expansions of F at
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the cusps of Γ0(6) are essentially the same, up to a possible minus sign, and the constant
coefficients of F at all cusps vanish. Using the formula for the Fourier expansion of the
Millson lift given in Theorem 3.3.1, it is now straightforward to check that F lifts to a
harmonic Maass form IM(F, τ) of weight 1/2 for ρL, whose principal part equals −2

√
6i

times the principal part of H̃. In view of Lemma 2.3.6, this implies that the difference
H̃ − i

2
√

6
IM(F, τ) is a cusp form. But S1/2,ρL

∼= Jcusp
1,6 = {0}, so we find

H̃ =
i

2
√

6
IM(F, τ).

The holomorphic coefficients of i
2
√

6
IM(F, τ) at q(24n−h2)/24eh for h2 − 24n < 0 are given

by

i

2
√

24n− h2

(
tr+
F

(
h2 − 24n

24
, h

)
− tr−F

(
h2 − 24n

24
, h

))
= − 1√

24n− h2
Im

(
tr+
F

(
h2 − 24n

24
, h

))
,

where we used that F has real coefficients and hence tr+
F (m,h) = tr−F (m,h). Comparing

the holomorphic parts of H̃ and i
2
√

6
IM(F, τ), we obtain the stated formulas for the

coefficients af (n) and aω(n).

4.2 ξ-preimages of unary theta functions and rationality
results

In [BFO09] and [BO10a], Bringmann, Folsom and Ono constructed scalar valued har-
monic Maass forms of weight 3/2 and 1/2 whose shadows are the components of the
unary theta functions θ1/2 and θ3/2 defined in Section 2.3.6. In both cases, the proof of
the modularity of their ξ-preimages relies on transformation properties of various hy-
pergeometric functions and q-series. Here we construct ξ-preimages for both θ1/2 and
θ3/2 using the Kudla-Millson and the Millson theta lift of a single weakly holomorphic
modular function F for Γ0(N). A nice feature of this approach is that the modularity is
clear from the construction. Further, the coefficients of the holomorphic parts of these
harmonic Maass forms are given by modular traces of F , and thus have good arith-
metic properties. Therefore, we obtain rationality results for the holomorphic parts of
harmonic Maass forms which map to the space of unary theta functions under ξ.

Let C((q)) be the ring of formal Laurent series and let C[[q]] be the ring of formal
power series in q. If f =

∑
n a(n)qn ∈ C((q)), we call the polynomial

Pf =
∑
n≤0

a(n)qn ∈ C[q−1]
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the principal part of f . There is a bilinear pairing

C((q))× C[[q]]→ C, (f, g) 7→ {f, g} := coefficient of q0 of f · g.

It only depends on the principal part of f .
Let k > 0 be an even integer. We denote by M !,∞

k (Γ0(N)) ⊂M !
k(Γ0(N)) the subspace

of those weakly holomorphic modular forms which vanish at all cusps different from
∞. We view the space M !,∞

2−k(Γ0(N)) as a subspace of C((q)) and view Mk(Γ0(N)) as a
subspace of C[[q]] by taking q-expansions at the cusp ∞.

Lemma 4.2.1. Let P ∈ C[q−1]. There exists an F ∈ M !,∞
2−k(Γ0(N)) with prescribed

principal part PF = P at the cusp ∞, if and only if {P, g} = 0 for all g ∈Mk(Γ0(N)).

This can be proved by varying the argument of [Bor99], Theorem 3.1. By Serre duality
it can be shown that the subspace M !,∞

2−k(Γ0(N)) ⊂ C((q)) is the orthogonal complement
of Mk(Γ0(N)) ⊂ C[[q]] with respect to the pairing {·, ·}.

We use this lemma to construct a suitable input F for the two theta lifts.

Lemma 4.2.2. Let k ∈ Z>0 be even. There exists Γ0(N)-invariant weakly holomorphic
modular form

F (z) =
∑

n�−∞

a(n)qn ∈M !,∞
2−k(Γ0(N))

with the following properties:

1. The Fourier coefficients a(n) of F at ∞ lie in Q.

2. The constant term a(0) of F at ∞ is non-zero.

Remark 4.2.3. 1. In a previous version of [BS17], we proved Lemma 4.2.2 in a
version which only worked for square free integers N , and hence had to include
this restriction in all the results in this section. The above formulation for arbitrary
N and the necessary adjustments in the proof are due to Jan Bruinier.

2. It is often possible to construct F as an eta quotient∏
d|N

η(dz)rd ,

where η = q
1
24

∏∞
n=1(1− qn) is the Dedekind eta function. Such an eta quotient is

a modular function for Γ0(N) if
∑

d|n rd = 0, and if
∑

d|N drd and N
∑

d|N rd/d are

divisible by 24. Further, its order at a cusp a
c

is (independently of a) given by

1

24

∑
d|N

(c, d)2

d
rd, (4.2.1)
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4 Applications of the Millson and the Kudla-Millson Theta Lifts

which allows to search for suitable eta quotients using linear algebra. Unfortu-
nately, it is not clear that the constant coefficient is non-zero, see the example in
the next item. The author has checked that for all N ≤ 200 there is a suitable eta
quotient with integral Fourier coefficients at ∞, and we conjecture that one can
always choose F as an eta quotient.

3. If N = p is a prime, then Γ0(p) has only two cusps, represented by ∞ and 0.
The function ∆(z)/∆(pz) has a pole at ∞ and vanishes at 0, and thus is a good
candidate for a suitable F . Its constant coefficient is given by τ(p), where τ(n)
are the coefficients of ∆(z). By Lehmer’s conjecture, we expect that τ(p) never
vanishes, but this is not known in general.

Proof of Lemma 4.2.2. If N = 1 and k = 2 then Mk(Γ0(N)) is trivial. In this case
we can take F = 1. Therefore we exclude this case from now on, so that Mk(N) is
non-trivial. We let Mk,0(Γ0(N)) ⊂ Mk(Γ0(N)) be the codimension 1 subspace of those
modular forms which vanish at the cusp ∞.

Since the cusp at ∞ of X0(N) is defined over Q, there exists an E =
∑

n≥0 c(n)qn ∈
Mk(Γ0(N)) with rational coefficients which has value 1 at ∞, i.e., c(0) = 1. (Such an E
can be obtained explicitly as a linear combination of the Eisenstein series at the cusps
∞ and 0.) It is well known that Mk(Γ0(N)) has a basis consisting of modular forms
with rational coefficients. Using E, we see that the space Mk,0(Γ0(N)) also has a basis
g1, . . . , gd consisting of forms with rational coefficients. Moreover, we have

Mk(Γ0(N)) = Mk,0(Γ0(N))⊕ CE.

The linear map Mk(Γ0(N))→ C[[q]]/C[q] induced by mapping a modular form to its
q-expansion is injective. Hence, the images of g1, . . . , gd and E are linearly independent.
Consequently, there exists a polynomial

P0 =
∑
n<0

a(n)qn ∈ q−1Q[q−1]

such that

{P0, gi} = 0, for i = 1, . . . , d, and {P0, E} = −1.

Put P = P0 + 1 ∈ Q[q−1]. Then we have

{P, gi} = 0, for i = 1, . . . , d, and {P,E} = 0,

and therefore {P, g} = 0 for all g ∈Mk(N).
According to Lemma 4.2.1 there exists an F ∈ M !,∞

2−k(Γ0(N)) with principal part
PF = P . We denote the Fourier expansion of F by F =

∑
n a(n)qn. The group

Aut(C/Q) acts on M !
2−k(Γ0(N)) by conjugation of the Fourier coefficients. Under the
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4.2 ξ-preimages of unary theta functions and rationality results

action of Aut(C/Q) on X0(N) the cusp at∞ is fixed, and the other cusps are permuted
among themselves. Hence Aut(C/Q) also acts on M !,∞

2−k(Γ0(N)) by conjugation of the
Fourier coefficients. Consequently, for σ ∈ Aut(C/Q), the form F σ also belongs to
M !,∞

2−k(Γ0(N)). Since PF ∈ Q[q−1], the form F − F σ has vanishing principal part and
therefore vanishes identically. We find that a(n) = a(n)σ for all n ∈ Z. Therefore, all
Fourier coefficients of F are rational.

We now use the modular function F ∈ M !,∞
0 (Γ0(N)) constructed in Lemma 4.2.2 as

an input for the Kudla-Millson theta lift IKM(F, τ) studied in [BF06] and the Millson
theta lift IM(F, τ) investigated above. The following theorem is just a straightforward
simplification of Theorem 4.5 from [BF06] and Theorem 3.3.1 above. In order to simplify
the formulas and the upcoming results, we multiply the expansion of the Millson lift given
in Theorem 3.3.1 by i/

√
N .

Theorem 4.2.4. Let F (z) =
∑

n�−∞ a(n)qn ∈M !,∞
0 (Γ0(N)) be as in Lemma 4.2.2 and

h ∈ Z/2NZ.

1. The function

IKM(F, τ)+
h =

∑
D∈Z,D<0
D≡h2(4N)

(
tr+
F (−D/4N, h) + tr−F (−D/4N, h)

)
q−D/4N

+ 4δ0,h

∑
n≥0

a(−n)σ1(n)−
∑
b>0

b
(
δb,h + δb,−h

)∑
n>0

a(−bn)q−b
2/4N

is the h-th component of the holomorphic part of a harmonic Maass form of weight
3/2 for ρL with

ξ3/2

(
IKM(F, τ)

)
= −
√
N

4π
a(0)θ1/2(τ).

Here δh,h′ equals 1 if h ≡ h′(2N) and 0 otherwise, and σ1(0) = − 1
24

.

2. The function

IM(F, τ)+
h =

∑
D∈Z,D<0
D≡h2(4N)

i√
|D|
(

tr+
F (−D/4N, h)− tr−F (−D/4N, h)

)
q−D/4N

+
∑
b>0

(
δb,h − δb,−h

)∑
n>0

a(−bn)q−b
2/4N

is the h-th component of the holomorphic part of a harmonic Maass form of weight
1/2 for ρL with

ξ1/2

(
IM(F, τ)

)
= − 1

2
√
N
a(0)θ3/2(τ).
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4 Applications of the Millson and the Kudla-Millson Theta Lifts

Remark 4.2.5. The Kudla-Millson lift of the constant 1-function gives a generalization
of Zagier’s non-holomorphic Eisenstein series of weight 3/2 from [Zag75] to arbitrary
level N , see also [BF06], Remark 4.6. The ξ-image of the Eisenstein series is a linear
combination of unary theta series associated to lattices (Z, n 7→ −dn2) with d | N , and
is invariant under all Atkin-Lehner involutions. Since θ1/2 is only Atkin-Lehner invariant
if N = 1 or N = p is prime, we can not take the Eisenstein series as a ξ-preimage of
θ1/2 in general. Also note that usually the principal parts of the harmonic Maass forms
given above are non-zero.

By the theory of complex multiplication, the rationality properties of traces of weakly
holomorphic modular functions are well understood. Therefore, we obtain the following
result on the rationality of the holomorphic parts of the harmonic Maass forms given
above.

Theorem 4.2.6. Let F ∈M !
0(Γ0(N)) and suppose that the Fourier coefficients of F at

∞ lie in Z and the expansions at all other cusps have coefficients in Z[ζN ]. Then for
D ≡ h2(4N), D < 0, the numbers

6
(

tr+
F (−D/4N, h) + tr−F (−D/4N, h)

)
(4.2.2)

and

6t
i√
|D|
(

tr+
F (−D/4N, h)− tr−F (−D/4N, h)

)
(4.2.3)

are rational integers, where D = t2D0 with a negative fundamental discriminant D0.

Proof. The assumption on the integrality of F at ∞ implies that F ∈ Q(j, jN). By
the theory of complex multiplication (see Theorem 4.1 in [BO13]), the values F (zQ) of
F at Heegner points zQ of discriminant D lie in the ring class field of the order OD
over Q(

√
D). Further, Lemma 4.3 in [BO13] asserts that the values F (zQ) are algebraic

integers. The Galois group of the ring class field of OD over Q(
√
D) permutes the

Heegner points occuring in tr+
F (−D/4N, h) and tr−F (−D/4N, h), see [Gro84]. It follows

that 6 tr+
F (−D/4N, h) and 6 tr−F (−D/4N, h) are algebraic integers in Q(

√
D), where the

factor 6 was added to get rid of possible factors |Γ0(N)Q| in the denominator. Using
that F has rational coefficients at ∞, we see that

tr−F (−D/4N, h) = tr+
F (−D/4N, h),

and thus

tr+
F (−D/4N, h) + tr−F (−D/4N, h) ∈ Q
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4.2 ξ-preimages of unary theta functions and rationality results

and

tr+
F (−D/4N, h)− tr−F (−D/4N, h) ∈

√
DQ.

This implies that the quantities in (4.2.2) and (4.2.3) are rational integers.

Remark 4.2.7. In all the numerical examples we looked at, the numbers in (4.2.2) and
(4.2.3) were already integers without the factors 6 and 6t. Possibly, this is always the
case.

Combining Theorem 4.2.4 and Theorem 4.2.6 we obtain that if F ∈ M !,∞
0 (Γ0(N)) is

as in Lemma 4.2.2 and has rational principal part at ∞, then the holomorphic parts
of IKM(F, τ) and IM(F, τ) have rational Fourier coefficients. This rationality result is
remarkable since the holomorphic coefficients of a harmonic Maass form of weight 1/2
which does not map to the space of unary theta functions under ξ1/2 are conjectured to
be transcendental almost always, see the conjecture and Corollary 1.4 in the introduction
of [BO10b].

Theorem 4.2.8. Let K be a number field and let Hk,ρL(K) be the subspace of Hk,ρL

consisting of forms whose principal part is defined over K.

1. Let f ∈ H1/2,ρL(K) and suppose that f is mapped to the space of unary theta
functions by ξ1/2. Then the coefficients of the holomorphic part f+ of f lie in K.

2. Let f ∈ H3/2,ρL(K) and suppose that f is mapped to the space of unary theta
functions by ξ3/2. Then there is a cusp form f ′ ∈ S3/2,ρL such that the coefficients
of f+ − f ′ lie in K.

Remark 4.2.9. The corresponding statement for the spaces H1/2,ρ∗L
and H3/2,ρ∗L

is also
true, but a little less interesting. Since there are no unary theta functions for ρL, it
just says that a weakly holomorphic modular form of weight 1/2 or 3/2 for ρ∗L, whose
principal part is defined over K, has coefficients in K up to addition of a cusp form.
This follows immediatly from the fact that the spaces M !

1/2,ρ∗L
and M !

3/2,ρ∗L
have bases

with rational coefficients (see [McG03]).

Proof of Theorem 4.2.8. We only prove the first claim, since the second one is similar.
Let f ∈ H1/2,ρL(K) and suppose that ξ1/2f lies in the space of unary theta functions.
By Theorem 4.2.4, there is some h ∈ H1/2,ρL , which is a linear combination of harmonic
Maass forms hj with rational holomorphic parts, such that ξ1/2f = ξ1/2h, i.e., f − h is
weakly holomorphic. We can write f−h as a linear combination of forms gi with rational
coefficients (see [McG03]). Having f written in terms of the gi and hj, we consider the
system of linear equations obtained from comparing the principal parts. It is defined
over K and has a solution in C, so we can also solve it over K. Thereby we obtain a
harmonic Maass form f̃ that has the same principal part as f and still maps to the space
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4 Applications of the Millson and the Kudla-Millson Theta Lifts

of unary theta functions under ξ1/2, but is now a linear combination of the gi and hj over

K. In particular, the coefficients of f̃+ lie in K. Then f − f̃ is a harmonic Maass forms
which has vanishing principal part and maps to the space of unary theta function under
ξ1/2. By Lemma 2.3.6, this implies that f − f̃ is a cusp form. But S1/2,ρL

∼= Jcusp
1,N = {0},

so f = f̃ , and thus f+ has coefficients in K.

4.3 Regularized inner products and Weyl vectors of
Borcherds products

The harmonic Maass forms constructed in Theorem 4.2.4 can be used to evaluate the
regularized Petersson inner product of the unary theta functions θ1/2 and θ3/2 with
harmonic Maass forms whose shadows are cusp forms.

Theorem 4.3.1. Let F (z) =
∑

n�−∞ a(n)qn ∈M !,∞
0 (Γ0(N)) be as in Lemma 4.2.2.

1. Let f ∈ H1/2,ρ∗L
with holomorphic coefficients c+

f (D/4N, h), where D ≡ h2(4N),
and suppose that ξ1/2f ∈ S3/2,ρL. Then

−
√
N

4π
a(0)(f, θ1/2)reg

=
∑
h(2N)

∑
D∈Z,D<0
D≡h2(4N)

c+
f (D/4N, h)

(
tr+
F (−D/4N, h) + tr−F (−D/4N, h)

)
+ 4c+

f (0, 0)
∑
n≥0

a(−n)σ1(n)− 2
∑
b>0

c+
f (b2/4N, b)b

∑
n>0

a(−bn).

2. Let f ∈ H3/2,ρ∗L
with holomorphic coefficients c+

f (D/4N, h), where D ≡ h2(4N),
and suppose that ξ3/2f ∈ S1/2,ρL. Then

− 1

2
√
N
a(0)(f, θ3/2)reg

=
∑
h(2N)

∑
D∈Z,D<0
D≡h2(4N)

c+
f (D/4N, h)

i√
|D|

(
tr+
F (−D/4N, h)− tr−F (−D/4N, h)

)
+ 2

∑
b>0

c+
f (b2/4N, b)

∑
n>0

a(−bn).

Proof. We show the formula for θ1/2. Using Stokes’ theorem, we see as in the proof of
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4.3 Regularized inner products and Weyl vectors of Borcherds products

[BF04], Proposition 3.5, that

(f, θ1/2)reg = −(IKM(F, τ), ξ1/2f)reg + lim
T→∞

∫ 1/2

−1/2

〈f(u+ iT ), IKM(F, u+ iT )〉du.

One can show as in [Alf14], Theorem 5.1, that IKM(F, τ) and IM(F, τ) are orthogonal
to cusp forms, i.e., (IKM(F, τ), ξ1/2f)reg = 0. The integral on the right-hand side picks
out the zero-coefficient, to which only the holomorphic part of f contributes in the
limit. Hence we obtain a formula for (f, θ1/2)reg of the shape (2.3.7), involving only the
coefficients of f+. Plugging in the coefficients of IKM(F, z) from Theorem 4.2.4 yields
the result.

Example 4.3.2. As a simple application of the last result, we show that the Petersson
norms of θ1/2 and θ3/2 are given by

(θ1/2, θ1/2) =
π(N + 1)

3
√
N

and (θ3/2, θ3/2) =

√
N(N − 1)

6
.

These can of course also be evaluated using more direct methods, for instance, the
Rankin-Selberg L-function, but it is interesting to see how the dependency on F in
Theorem 4.3.1 disappears if we plug in θ1/2 or θ3/2 for f .

We only show the formula for θ1/2, since the proof for θ3/2 is very similar. We can
assume a(0) = 1. Let

E∗2(z) = 1− 24
∞∑
n=1

σ1(n)e(nz)− π

3y
,

(
σ1(n) =

∑
d|N

d

)
,

be the non-holomorphic Eisenstein series of weight 2 for SL2(Z). Then E∗2(z)−NE∗2(Nz)
is a holomorphic modular form of weight 2 for Γ0(N), and by applying the residue
theorem to F (z)(E∗2(z)−NE∗2(Nz))dz, we find that F satisfies

(1−N)− 24
∑
n>0

a(−n)(σ1(n)−Nσ1(n/N)) = 0. (4.3.1)

If we denote by cθ(D/4N, h) the coefficients of θ1/2, we see that cθ(0, 0) = 1, and
cθ(b

2/4N, b) equals 2 or 1 for b > 0 depending on whether b ≡ −b(2N) or not. Ap-
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4 Applications of the Millson and the Kudla-Millson Theta Lifts

plying Theorem 4.3.1 and using the relation (4.3.1) we obtain

−
√
N

4π
(θ1/2, θ1/2) = 4

∑
n≥0

a(−n)σ1(n)− 4
∑
b>0

b≡0(N)

b
∑
n>0

a(−bn)− 2
∑
b>0

b 6≡0(N)

b
∑
n>0

a(−bn)

= 4σ1(0) + 2
∑
n>0

a(−n)(σ1(n)−Nσ1(n/N)) = −1 +N

12
.

This yields the stated formula.

The formula given in the first item of Theorem 4.3.1 has applications in the theory of
Borcherds products, see [Bor98]. We follow the exposition of [BO10b]. Let f ∈ H1/2,ρ∗L
be a harmonic Maass form of weight 1/2 for ρ∗L whose shadow is a cusp form, and assume
that c+

f (D/4N, h) ∈ R for all D and c+
f (D/4N, h) ∈ Z for D ≤ 0. Then the infinite

product

Ψ(z, f) = e(ρf,∞z)
∞∏
n=1

(1− e(nz))c
+
f (n2/4N,n)

is a meromorphic modular form of weight c+
f (0, 0) for Γ0(N) and a unitary character,

possibly of infinite order (see Theorems 6.1 and 6.2 in [BO10b]). Here ρf,∞ is the so-
called Weyl vector at ∞, which is defined by

ρf,∞ =

√
N

8π
(f, θ1/2)reg.

The Bocherds product Ψ(z, f) has singularities at Heegner points in H, which are pre-
scribed by the principal part of f , and its orders at the cusps are determined by the
corresponding Weyl vectors, which we describe now.

Each cusp of Γ0(N) can be represented by a reduced fraction a/c with c | N , and the
Weyl vector corresponding to a/c is defined by

ρf,a/c =

√
N

8π
(f, θ

σc/(c,N/c)
1/2,N/(c,N/c)2|U(c,N/c))

reg, (4.3.2)

where σc/(c,N/c) denotes the Atkin-Lehner involution corresponding to the exact divisor
c/(c,N/c) of N/(c,N/c)2 as in (2.3.9), and U(c,N/c) is the level raising operator (2.3.10).
Note that the Weyl vector at a/c does not depend on a. Further, Theorem 4.3.1 yields a
formula for the Weyl vector at each cusp a/c, involving only the principal part of f and
the coefficients c+

f (b2, r) for b > 0 and r ∈ Z/2NZ with r2 ≡ b2(4N). Thus, we obtain
the following rationality result.

Corollary 4.3.3. Let f ∈ H1/2,ρ∗L
be a harmonic Maass form with ξ1/2f ∈ S3/2,ρL.

Suppose that c+
f (D/4N, h) ∈ R for all D and that c+

f (D/4N, h) ∈ Z for D ≤ 0. If
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4.3 Regularized inner products and Weyl vectors of Borcherds products

c+
f (b2/4N, h) ∈ Q for all b > 0 and all possible h ∈ Z/2NZ, then the Weyl vectors ρf,a/c

at all cusps are rational.

The formula for the Weyl vector ρf,a/c obtained from Theorem 4.3.1 looks quite com-
plicated in general. Thus, for simplicity, we only state it in the special case of a cusp
a/c with c || N and (a, c) = 1. Then θ

σc/(c,N/c)
1/2,N/(c,N/c)2|U(c,N/c) = θσc1/2,N , and Theorem 4.3.1

gives the following formula.

Corollary 4.3.4. Let f ∈ H1/2,ρ∗L
be a harmonic Maass form with ξ1/2f ∈ S3/2,ρL.

Suppose that c+
f (D/4N, h) ∈ R for all D and that c+

f (D/4N, h) ∈ Z for D ≤ 0. Let c || N
and let σc be the associated Atkin-Lehner involution as in (2.3.9). Let F ∈M !,∞

0 (N) be
as in Lemma 4.2.2, normalized to a(0) = 1. Then the Weyl vector ρf,a/c at the cusp a/c
is given by

ρf,a/c =

√
N

8π
(fσc , θ1/2)reg

= −1

2

∑
h(2N)

∑
D<0

D≡h2(4N)

c+
f (D/4N, σc(h))

(
tr+
F (−D/4N, h) + tr−F (−D/4N, h)

)
− 2c+

f (0, 0)
∑
n≥0

a(−n)σ1(n) +
∑
b>0

c+
f (b2/4N, σc(b))b

∑
n>0

a(−bn).

Remark 4.3.5. 1. If N is square free, the cusps of Γ0(N) are represented by the
fractions 1/c, where c runs through the divisors of N . In this case all Weyl vectors
can be computed with the above formula.

2. In [Bor98], Section 9, the Weyl vectors are computed in a similar way, using non-
holomorphic Eisenstein series of weight 3/2 as ξ-preimages for θ1/2. However, this
only works if N = 1 or if N = p is a prime. Otherwise, the Eisenstein series, and
thus also its ξ-image, is invariant under all Atkin-Lehner involutions, but θ1/2 is
not.

Example 4.3.6. We consider the Borcherds lift of f = θ1/2, for N arbitrary. By
Example 4.3.2, the Weyl vector of θ1/2 at∞ equals (1+N)/24, so its Borcherds product
is given by

Ψ(z, θ1/2) = η(z)η(Nz).

By a similar computation as in Example 4.3.2 we find

(θσc1/2, θ1/2) =
π

3
√
N

(
N

c
+ c

)
for c || N . Hence the Weyl vector of Ψ(z, f) at a cusp a/c with c || N is given by
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1
24
N
c

(
1 + c2

N

)
. From this we can infer that the Borcherds product of θσc1/2 equals

Ψ(z, θσc1/2) = η(cz)η

(
N

c
z

)
.

Finally, we would like to mention that the harmonic Maass form IM(F, τ) given in
Theorem 4.2.4 can be used to construct rational functions onX0(N) with special divisors.
Let ∆ 6= 1 be a fundamental discriminant and let r ∈ Z with ∆ ≡ h2(4N). Further, let
ρ̃L = ρL if ∆ > 1 and ρ̃L = ρ∗L if ∆ < 0 for the moment. The twisted Borcherds product
of a harmonic Maass form f ∈ H1/2,ρ̃∗L

with real holomorphic part and integral principal
part is defined by

Ψ∆,r(z, f) =
∞∏
n=1

∏
b(∆)

[1− e(b/∆)e(nz)](
∆
b )c+f (|∆|n2/4N,rn),

see [BO10b], Theorem 6.1. Note that the Weyl vectors vanish for ∆ 6= 1. The function
Ψ∆,r(z, f) is a meromorphic modular form of weight 0 for Γ0(N) and a unitary character,
which is of finite order if and only if the coefficients c+

f (|∆|n2/4N, rn) are rational (see
Theorem 6.2 in [BO10b]).

If F ∈M !,∞
0 (N) is as in Lemma 4.2.2 and has integral principal part, then the Millson

lift IM(F, τ) given in Theorem 4.2.4 is a harmonic Maass form in H1/2,ρL with rational
holomorphic part and integral principal part. In particular, for ∆ < 0, some power of
the twisted Borcherds product Ψ∆,r(z, I

M(F, τ)) defines a rational function on X0(N)
whose zeros and poles lie on a twisted Heegner divisor.
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Forms

In this chapter, we extend Borcherds’ regularized theta lift from weight 1/2 weakly holo-
morphic modular forms to real analytic modular functions with logarithmic singularities
to twisted Borcherds lifts of harmonic Maass forms of weight 1/2.

5.1 Analytic properties of the Borcherds lift

Let ∆ be a fundamental discriminant (possibly 1) and let r ∈ Z/2NZ such that ∆ ≡
r2 mod 4N . Recall from Section 2.4.4 the notations

ρ̃L =

{
ρL, if ∆ > 0,

ρ∗L, if ∆ < 0,
, Q∆(X) =

1

|∆|
Q(X), (X, Y )∆ =

1

|∆|
(X, Y ),

and the twisted Siegel theta function

Θ∆,r(τ, z) = v
∑

h∈L′/L

∑
X∈L+rh

Q(X)≡∆Q(h) (∆)

χ∆(X)e
(
τQ∆(Xz) + τ̄Q∆(Xz⊥)

)
eh, (5.1.1)

which is Γ0(N)-invariant in z and transforms like a modular form of weight −1/2 for ρ̃L.
Let f ∈ H1/2,ρ̃∗L

. In this chapter, it is more convenient to work with the normalization of
the Fourier expansion of f given in (2.3.2), involving the functions β1/2(w) and βc1/2(w).

We let

H+
∆,r(f) =

⋃
h∈L′/L,n<0

c+f (n,h)6=0

{
zX : X ∈ L−|∆|n,rh

}
, H−∆,r(f) =

⋃
h∈L′/L,n>0

c−f (n,h)6=0

⋃
X∈L−|∆|n,rh

cX ,

be the sets of Heegner points and geodesics associated to f .

Following Borcherds [Bor98], we define the regularized theta lift of f ∈ H1/2,ρ̃∗L
by

Φ∆,r(f, z) = CTs=0

(
lim
T→∞

∫
FT

〈
f(τ),Θ∆,r(τ, z)

〉
v−s

du dv

v2

)
, (5.1.2)
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5 Borcherds Lifts of Harmonic Maass Forms

where
FT = {τ = u+ iv ∈ H : |τ | ≥ 1, |u| ≤ 1/2, v ≤ T}

is a truncated fundamental domain for the action of SL2(Z) on H, and CTs=0 F (s)
denotes the constant term in the Laurent expansion of the analytic continuation of F (s)
at s = 0. Borcherds [Bor98] proved that for ∆ = 1 and a weakly holomorphic modular
form f ∈M !

1/2,ρ∗L
the above regularized integral exists and defines a real analytic Γ0(N)-

invariant function with logarithmic singularities at the Heegner points in H+
∆,r(f). It

was shown by Bruinier and Ono [BO10b] that this result remains true for the twisted
lifts of harmonic Maass forms f ∈ H+

1/2,ρ̃∗L
which map to cusp forms under ξ1/2. We will

generalize the theta lift to the full space H1/2,ρ̃∗L
, and we will see that further singularities

along the geodesics in H−∆,r(f) occur.
We say that a complex-valued function f defined on some subset of Rn has a singularity

of type g (written f ≈ g) at a point z0 if there is an open neighbourhood U of z0 such
that f and g are defined on a dense subset of U and f − g can be continued to a real
analytic function on U .

Theorem 5.1.1. For f ∈ H1/2,ρ̃∗L
the Borcherds lift Φ∆,r(f, z) defines a Γ0(N)-invariant

real analytic function on H \ (H+
∆,r(f) ∪H−∆,r(f)) with

∆0Φ∆,r(f, z) =

{
−2a+

f (0, 0), if ∆ = 1,

0, if ∆ 6= 1.

At a point z0 ∈ H+
∆,r(f) ∪H−∆,r(f) it has a singularity of type

−
∑

h∈L′/L

∑
n<0

c+
f (n, h)

∑
X∈L−|∆|n,rh

z0=zX

χ∆(X) log(−Q∆(Xz⊥))

+
∑

h∈L′/L

∑
n>0

c−f (n, h)n−1/2
∑

X∈L−|∆|n,rh
z0∈cX

χ∆(X) arcsin

(√
Q∆(X)

Q∆(Xz⊥)

)
.

Remark 5.1.2.

1. Recall that for X =

(
−b/2N −c/N

a b/2N

)
∈ L′ we have

−Q∆(Xz⊥) =
1

4N |∆|y2
|QX(z)|2 =

1

4N |∆|y2
|aNz2 + bz + c|2,

which yields a more explicit formula for the singularities. Since 0 < Q∆(X)
Q∆(X

z⊥ )
≤ 1

for all X with Q∆(X) < 0, and Q∆(X)/Q∆(Xz⊥) = 1 exactly for z ∈ cX , we see
that the Borcherds lift extends to a continuous function on H \H+

∆,r(f), which is

110



5.1 Analytic properties of the Borcherds lift

not differentiable along the geodesics in H−∆,r(f). Note that we can also write the
singularities in the form

arcsin

(√
Q∆(X)

Q∆(Xz⊥)

)
= arctan

(√
Q∆(X)

−Q∆(Xz)

)
.

2. For d || N the Atkin-Lehner involution Wd acts on the Siegel theta function by

Θ∆,r(τ,Wdz) = Θ∆,r(τ, z)wd ,

which implies that the Borcherds lift satisfies

Φ∆,r(f,Wdz) = Φ∆,r(f
wd , z)

Proof of Theorem 5.1.1. We first show that for z ∈ H \ (H+
∆,r(f) ∪ H−∆,r(f)) the in-

tegral in (5.1.2) converges absolutely and locally uniformly for Re(s) > 1/2 and has
a meromorphic continuation to s = 0. The proof follows the arguments of [Bru02],
Proposition 2.8.

The integral over the compact set F1 = {τ ∈ H : |τ | ≥ 1, |u| ≤ 1/2, v ≤ 1} converges
absolutely and locally uniformly for all s ∈ C and z ∈ H. We consider the remaining
integral

ϕ(z, s) =

∫ ∞
v=1

∫ 1

u=0

〈
f(τ),Θ∆,r(τ, z)

〉
v−s

du dv

v2
.

Inserting the Fourier expansions of f(τ) and Θ∆,r(τ, z) and carrying out the integral
over u, we obtain

ϕ(z, s) = χ∆(0)

(
c+
f (0, 0)

∫ ∞
v=1

v−1−sdv + c−f (0, 0)

∫ ∞
v=1

v−1/2−sdv

)
+

∫ ∞
v=1

∑
h,X

χ∆(X)c+
f (−Q∆(X), h) exp (4πQ∆(Xz⊥)v) v−s−1dv

+

∫ ∞
v=1

∑
Q(X)=0

χ∆(X)c−f (−Q∆(X), h) exp(4πQ∆(Xz⊥)v)v−s−1/2dv

+

∫ ∞
v=1

∑
Q(X)>0

χ∆(X)c−f (−Q∆(X), h)β1/2(4πQ∆(X)v) exp(4πQ∆(Xz⊥)v)v−s−1/2dv

+

∫ ∞
v=1

∑
Q(X)<0

χ∆(X)c−f (−Q∆(X), h)βc1/2(4πQ∆(X)v) exp(4πQ∆(Xz⊥)v)v−s−1/2dv

where the sums run over h ∈ L′/L and X ∈ (L+ rh) \ {0} with Q(X) ≡ ∆Q(h) mod ∆.
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5 Borcherds Lifts of Harmonic Maass Forms

Since χ∆(0) = 0 for ∆ 6= 1 the integrals in the first line only appear if ∆ = 1. They
can be evaluated for Re(s) > 1/2 by∫ ∞

v=1

v−1−sdv =
1

s
,

∫ ∞
v=1

v−1/2−sdv =
1

s− 1/2
,

giving their meromorphic continuations to s = 0. Note that this shows that for ∆ = 1
the regularization involving the extra parameter s is really necessary.

The integral in the second line involving the coefficients c+
f (n, h) converges locally

uniformly and absolutely for s ∈ C and z ∈ H \ H+
∆,r(f) by the same arguments as

in the proof of [Bru02], Proposition 2.8. The integrals over the sums corresponding to
Q(X) = 0 and Q(X) > 0 in the third and fourth line can be treated in the same way,
and they converge locally uniformly and absolutely for s ∈ C and z ∈ H.

The remaining integral in the fifth line can be written as∑
h∈L′/L

∑
n>0

c−f (n, h)

∫ ∞
v=1

∑
X∈L−|∆|n,rh

χ∆(X)βc1/2(4πQ∆(X)v) exp (4πQ∆(Xz⊥)v) v−s−1/2dv,

where the first two sums are finite. Hence, estimating

βc1/2(4πQ∆(X)v) ≤ 2 exp(−4πQ∆(X)v)

and using Q∆(X) = Q∆(Xz) +Q∆(Xz⊥), it suffices to consider the integral∫ ∞
v=1

∑
X∈L−|∆|n,rh

exp (−4πQ∆(Xz)v) v−Re(s)−1/2dv. (5.1.3)

For any C ≥ 0 and any compact subset K ⊂ H the set{
X ∈ L−|∆|n,rh : ∃z ∈ K with |Q∆(Xz)| ≤ C

}
is finite, so if z ∈ K ⊂ H \H−∆,r(f) then there is some ε > 0 such that Q∆(Xz) > ε for
all X ∈ L−|∆|n,rh. We can now estimate∑

X∈L−|∆|n,rh

exp (−4πQ∆(Xz)v) ≤ e−2πεveπn
∑

X∈L−|∆|n,rh

exp (−π(Q∆(Xz)−Q∆(Xz⊥)))

for v ≥ 1. The series on the right-hand side converges since X 7→ Q∆(Xz) − Q∆(Xz⊥)
is a positive definite quadratic form. In particular, the integral in (5.1.3) converges
absolutely and locally uniformly for s ∈ C and z ∈ H \ H−∆,r(f). This shows that the
regularized theta integral exists.

By similar arguments as above we see that all iterated partial derivatives of Φ∆,r(f, z)
converge absolutely and locally uniformly on H \ (H+

∆,r(f) ∪H−∆,r(f)), so the Borcherds
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5.1 Analytic properties of the Borcherds lift

lift is a smooth function. The statement concerning the Laplacian can now be proven
by interchanging ∆0 = ∆0,z with the integral, using the differential equation

∆0,zΘ∆,r(τ, z) = 4v1/2∆1/2,τv−1/2Θ∆,r(τ, z),

(see Lemma 2.4.8) and then applying Stokes’ theorem to move ∆1/2,τ from the theta
function to f(τ)v−s in the integral (compare [Bru02], Lemma 4.3). It is easy to verify
that the appearing boundary integrals vanish. By computing ∆1/2(f(τ)v−s) explicitly
and using that f is harmonic, we obtain

∆0Φ∆,r(f, z) = −2 Ress=0 lim
T→∞

∫
FT
〈f(τ),Θ∆,r(τ, z)〉v−sdu dv

v2
.

We have seen above that the integral on the right-hand side is holomorphic at s = 0
if ∆ 6= 1, and has a simple pole with residue a+

f (0, 0) if ∆ = 1, coming from the first
integral in the first line of ϕ(z, s). This shows the Laplace equation for Φ∆,r(f, z), which
also implies that the Borcherds lift is real analytic by a standard regularity result for
elliptic differential equations.

The singularities of Φ∆,r(f, z) can be determined using the following lemma with
n = −Q∆(X) and t = −Q∆(Xz⊥).

Lemma 5.1.3. 1. The function

I+(t) =

∫ ∞
v=1

e−4πtv dv

v

is real analytic for t > 0 and has a singularity of type − log(t) at t = 0.

2. For n > 0 the function

I−n (t) =

∫ ∞
v=1

√
vβc1/2(−4πnv)e−4πtv dv

v

is real analytic for t > n and has a singularity of type n−1/2 arcsin
(√

n
t

)
at t = n.

Proof. We follow the proof of [Bor98], Lemma 6.1. Using partial integration and the
fact that log(v) is integrable near v = 0, we see that

I+(t) ≈ 4πt

∫ ∞
v=0

e−4πtv log(v)dv =

∫ ∞
v=0

e−v log
( v

4πt

)
dv ≈ − log(t).
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5 Borcherds Lifts of Harmonic Maass Forms

For n > 0, we use that
√
vβc1/2(−4πnv) = O(

√
v) as v → 0 and compute

I−n (t) ≈
∫ ∞
v=0

(
2
√
v

∫ 1

w=0

e4πnvw2

dw

)
e−4πtv dv

v

=

∫ 1

w=0

1√
t− nw2

dw

= n−1/2 arcsin

(√
n

t

)
.

This finishes the proof of the lemma and of Theorem 5.1.1.

5.2 The Fourier expansion of the Borcherds lift

Next, we compute the Fourier expansion of the Borcherds lift. To this end, we first need
to introduce a special function which captures the arcsin singularities of Φ∆,r(f, z) along
vertical geodesics.

For a ≥ 1 and Re(s) > −1 we define

arcsins

(
1√
a

)
=

∫ 1

0

1√
a− t2

(
1− t2

a− t2

)s
dt. (5.2.1)

The function arcsins is holomophic in s and satisfies

arcsin0(1/
√
a) = arcsin(1/

√
a).

The factor (1− t2)s ensures that the integral converges at a = 1 if Re(s) ≥ 1/2, and the
factor (a− t2)s in the denominator was added to make the estimate

| arcsins(1/
√
a)| ≤ (a− 1)−Re(s)−1/2 (5.2.2)

for a > 1 and Re(s) > 0 hold. Note that for Re(s) > −1 we can write

arcsins

(
1√
a

)
=

√
π Γ(s+ 1)

2Γ(s+ 1/2)
B(1/a; s+ 1/2, 1/2), (5.2.3)

where

B(z;α, β) =

∫ z

0

uα−1(1− u)β−1du

is the incomplete beta function. This representation makes it easier to compute the
derivative of arcsins.
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5.2 The Fourier expansion of the Borcherds lift

Lemma 5.2.1. For z = x+ iy ∈ H and Re(s) > 0 we have the Fourier expansion

∑
`∈Z

arcsins

(
y√

(x+ `)2 + y2

)
= y

√
π Γ(s)

Γ(s+ 1/2)

+ 2y

√
π

Γ(s+ 1/2)

∑
n 6=0

(π|n|y)s
(∫ 1

0

(1− t2)s/2Ks

(
2π|n|y

√
1− t2

)
dt

)
cos(2πnx),

where Ks denotes the K-Bessel function of order s. For Re(s) > −1 the series on
the right-hand side converges absolutely and locally uniformly in s. In particular, the
left-hand side has a meromorphic continuation to Re(s) > −1 with a simple pole at
s = 0.

Proof. The estimate (5.2.2) shows that the series on the left-hand side converges abso-
lutely for Re(s) > 0. It is 1-periodic and even in x and hence has a Fourier expansion
of the form

∑
n∈Z a(n, y) cos(2πnx) with coefficients

a(n, y) =

∫ ∞
−∞

arcsins

(
1√

(u/y)2 + 1

)
cos(2πnu)du.

We plug in the definition of arcsins and interchange the order of integration to find

a(n, y) =

∫ 1

0

(∫ ∞
−∞

cos(2πnu)

((u/y)2 + 1− t2)s+1/2
du

)
(1− t2)sdt

= y

∫ 1

0

(∫ ∞
−∞

cos
(
2πnuy

√
1− t2

)
(u2 + 1)s+1/2

du

)
dt.

For n = 0 the inner integral can be evaluated as∫ ∞
−∞

1

(u2 + 1)s+1/2
du =

√
π Γ(s)

Γ(s+ 1/2)
,

by a direct calculation using the definition of the Gamma function. For n 6= 0 we can
replace n by |n|, and then the inner integral can be computed using the representation

Ks(x) =
2s−1Γ(s+ 1/2)√

π xs

∫ ∞
−∞

cos(xu)

(u2 + 1)s+1/2
du,

which is valid for Re(s) > −1/2 and x > 0 (see [AS64, 9.6.25]). Note that Ks = K−s.
The asymptotics K0(z) ∼ − log(z) and Ks(z) ∼ 1

2
Γ(s)(1

2
z)−s for Re(s) > 0 fixed as

z → 0 (see [AS64, 9.6.8, 9.6.9]) show that the integral in the series is holomorphic for
Re(s) > −1. This completes the proof.
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5 Borcherds Lifts of Harmonic Maass Forms

Proposition 5.2.2. Let f ∈ H1/2,ρ̃∗L
. For y � 0 sufficiently large, the Borcherds lift of

f has the Fourier expansion

Φ∆,r(f, z) = −4
∞∑
m=1

c+
f (|∆|m2/4N, rm)

∑
b(∆)

(
∆

b

)
log |1− e(mz + b/∆)|

+ 2
∞∑
m=1

c−f (|∆|m2/4N, rm)

(
|∆|m2

4N

)−1/2∑
b(∆)

(
∆

b

)
F(mz + b/∆)

+



√
Ny(f, θ1/2)reg − c+

f (0, 0)
(
log(4πNy2) + Γ′(1)

)
−
√
Ny c−f (0, 0)

(
log(4π)− log(Ny2) + Γ′(1)

) if ∆ = 1,

2
√

∆L(1, χ∆)
(
c+
f (0, 0) +

√
Ny c−f (0, 0)

)
if ∆ > 1,

0 if ∆ < 0.

Here the function F(z) : H→ R is defined by

F(z) = lim
s→0

(∑
`∈Z

arcsins

(
y√

(x+ `)2 + y2

)
− y

√
π Γ(s)

Γ(s+ 1/2)

)
,

compare Lemma 5.2.1.

Remark 5.2.3. 1. The singularities of Φ∆,r(f, z) at Heegner points and geodesics
given by semi-circles centered at the real line are not reproduced in the Fourier
expansion above, but the part involving the function F captures the singularities
along vertical geodesics.

2. By Dirichlet’s class number formula we have

L(1, χ∆) =
1√
∆
h(∆) log(ε∆) =

1

2
tr1(−∆/4)

for ∆ > 1, where h(∆) is the narrow class number of Q(
√

∆), ε∆ is the smallest
unit > 1 of norm 1, and tr1(−∆/4) is the ∆-th trace of the constant 1 function.

Proof of Proposition 5.2.2. The proof follows the arguments of [BO10b], Theorem 5.3.
First, by [BO10b], Theorem 4.8, we can write

v−1/2Θ∆,r(τ, z) = δ∆=1

√
Ny√
|∆|

θ1/2(τ)

+

√
Ny√
|∆|

∑
n≥1

∑
M∈Γ̃∞\Γ̃

[
exp

(
−πn

2Ny2

|∆|v

)
Ξ(τ, µ, n, 0)

] ∣∣∣∣
1/2,ρ̃∗L

M,
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5.2 The Fourier expansion of the Borcherds lift

where µ =
(
x −x2

−1 −x
)

and

Ξ(τ, µ, n, 0) =

(
∆

n

)
ε
√
|∆|

∑
h∈K′/K

∑
X∈K+rh

Q(X)≡∆Q(h) (∆)

e (−Q∆(X)τ + n(X,µ)∆) eh,

with ε = 1 if ∆ > 0 and ε = i if ∆ < 0. Further, K denotes the one-dimensional
negative definite sublattice

K =

{(
b 0
0 −b

)
: b ∈ Z

}
of L. Its dual lattice is given by

K ′ =

{(
b/2N 0

0 −b/2N

)
: b ∈ Z

}
.

Inserting this into the definition of the theta lift, the unfolding argument yields

Φ∆,r(f, z) = δ∆=1

√
Ny√
|∆|

(f, θ1/2)reg + CTs=0 Φ0
∆,r(f, z, s),

where

Φ0
∆,r(f, z, s) =

2
√
Ny√
|∆|

∑
n≥1

∫ ∞
v=0

∫ 1

u=0

exp

(
−πn

2Ny2

|∆|v

)
〈f,Ξ(τ, µ, n, 0)〉du dv

vs+3/2
.

The unfolding is justified for y � 0 by the same arguments as in [Bor98], Theorem 7.1.
Let us write

f(τ) =
∑

h∈L′/L

∑
n∈Q

cf (n, h, v)e(nτ)eh

for the Fourier expansion of f for the moment. Since ∆ is fundamental, the conditions
X ∈ K + rh and Q(X) ≡ ∆Q(h) mod ∆ are equivalent to X = ∆X ′ and rX ′ ∈ K + h
for some X ′ ∈ K ′. Plugging in the definition of Ξ(τ, n, µ, 0), and evaluating the integral
over u, we obtain

Φ0
∆,r(f, z, s) = 2

√
Nyε

∑
X∈K′

∑
n≥1

(
∆

n

)
e (− sgn(∆)n(X,µ))

×
∫ ∞
v=0

cf (−|∆|Q(X), rX, v) exp

(
−πn

2Ny2

|∆|v
+ 4π|∆|Q(X)v

)
dv

vs+3/2
.

Now we use the explicit form of the Fourier coefficients of f . The summand for X = 0

117



5 Borcherds Lifts of Harmonic Maass Forms

in Φ0
∆,r(f, z, s) is given by

2
√
Nyε

∑
n≥1

(
∆

n

)∫ ∞
v=0

(
c+
f (0, 0) + c−f (0, 0)v1/2

)
exp

(
−πn

2Ny2

|∆|v

)
dv

vs+3/2

= 2ε
(
Ny2

)−s(
c+
f (0, 0)

(
π

|∆|

)−s−1/2

Γ(s+ 1/2)L(2s+ 1, χ∆)

+
√
Ny c−f (0, 0)

(
π

|∆|

)−s
Γ(s)L(2s, χ∆)

)
.

For ∆ < 0 the harmonic Maass form f transforms with ρL, which implies that its zero
component vanishes, so c±f (0, 0) = 0. For ∆ > 0 the completed Dirichlet L-function

Λ(s, χ∆) = (π/∆)−s/2Γ(s/2)L(s, χ∆)

satisfies the functional equation Λ(1 − s, χ∆) = Λ(s, χ∆). It is holomorphic at s = 1 if
∆ > 1. Taking the constant term at s = 0, we get the contribution in the large bracket
in the proposition.

For X ∈ K ′ with X 6= 0 we have −|∆|Q(X) > 0. We can write

cf (n, h, v) = c+
f (n, h) + c−f (n, h)

√
vβc1/2(−4πnv)

for n > 0. The contribution coming from the coefficients c+
f (n, h) can be computed as

in [BO10b], Theorem 5.2, and yields the first line of the Fourier expansion. Plugging in
the definition of βc1/2(s), it remains to compute

4
√
Nyε

∑
X∈K′
X 6=0

c−f (−|∆|Q(X), rX)
∑
n≥1

(
∆

n

)
e (− sgn(∆)n(X,µ)) (5.2.4)

×
∫ ∞
v=0

(∫ 1

w=0

exp(−4π|∆|Q(X)w2v)dw

)
exp

(
−πn

2Ny2

|∆|v
+ 4π|∆|Q(X)v

)
dv

v
.

If we change the order of integration, the inner integral can be computed in terms of the
K-Bessel function by [EMOT54, (3.471.9)], giving∫ ∞
v=0

exp

(
4π|∆|Q(X)(1− w2)v − πn2Ny2

|∆|v

)
dv

v
= 2K0

(
2πy|n|

√
−4NQ(X)(1− w2)

)
.

Write X =
(
m/2N 0

0 −m/2N

)
∈ K ′ \ {0} with m ∈ Z,m 6= 0. Then −Q(X) = m2/4N and
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5.2 The Fourier expansion of the Borcherds lift

−(X,µ) = mx. We use the evaluation of the Gauss sum∑
b(∆)

(
∆

b

)
e(bn/|∆|) = ε

(
∆

n

)√
|∆|. (5.2.5)

Then the expression in (5.2.4) becomes

2
∞∑
m=1

af (|∆|m2/4N, rm)

(
|∆|m2

4N

)−1/2∑
b(∆)

(
∆

b

)

× 2my
∑
n6=0

e (n(mx+ b/∆))

∫ 1

0

K0

(
2πmy|n|

√
1− w2

)
dw.

By Lemma 5.2.1 the second line agrees with F(mz+ b/∆), which finishes the proof.

If the coefficients c+
f (n, h) vanish for n < 0, then Φ∆,r(f, z) does not have singularities

at Heegner points, and extends to a continuous function on H which is not differentiable
along the geodesics in H−∆,r(f). Further, the estimates from Theorem 2.3.22 show that

the coefficients c+
f (n, h) grow polynomially as n → ∞, which implies that the series in

the first line of the Fourier expansion given above converges on H. In this case, we can
derive the Fourier expansion of Φ∆,r(f, z) on H \ H−∆,r(f), without assuming y � 0 to
be large enough.

Corollary 5.2.4. Let f ∈ H1/2,ρ̃∗L
, and suppose that c+

f (n, h) = 0 for all n < 0 and

h ∈ L′/L. Then the Fourier expansion of the Borcherds lift Φ∆,r(f, z) on H \H−∆,r(f) is
given by the formula from Proposition 5.2.2 plus the expression

−2
∑

h∈L′/L

∑
n>0

c−f (n, h)n−1/2
∑

X∈L−|∆|n,rh
a6=0

χ∆(X)1X(z)

(
arctan

( √
4|∆|n

− sgn(a)pX(z)

)
+
π

2

)
,

(5.2.6)

where 1X(z) denotes the characteristic function of the bounded component of H \ cX .

Remark 5.2.5. 1. Recall that for X =

(
−b/2N −c/N

a b/2N

)
∈ L′ we have

Q∆(Xz) =
1

4
p2
X(z), pX(z) = −aN |z|

2 + bx+ c

y
√
N

.

Further, if a 6= 0 then a point z lies inside the bounded component of H \ cX if
and only if sgn(a)pX(z) > 0.
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5 Borcherds Lifts of Harmonic Maass Forms

2. The sum in (5.2.6) is locally finite since for fixed n each point z lies in the bounded
component of H \ cX for only finitely many X ∈ L−|∆|n,rh with a 6= 0.

Proof. Let Φ̃∆,r(f, z) denote Φ∆,r(f, z) minus the expression in (5.2.6). Then we have
Φ̃∆,r(f, z) = Φ∆,r(f, z) for y � 0 large enough since the imaginary parts of points lying
on geodesics cX for X ∈ L−|∆|n,rh with a 6= 0 are bounded by a constant depending on
n, and the sum over n is finite.

Further, for a 6= 0 and z /∈ cX we can write

− 2 · 1X(z)

(
arctan

( √
4|∆|n

− sgn(a)pX(z)

)
+
π

2

)

= arctan

(√
4|∆|n
|pX(z)|

)
−

(
arctan

( √
4|∆|n

− sgn(a)pX(z)

)
+ 1X(z)π

)

= arctan

(√
Q∆(X)

−Q∆(Xz)

)
− arccot

(
− sgn(a)pX(z)√

4|∆|n

)
.

Using that the function arccot is real analytic at the origin, and the shape of the singu-
larities of Φ∆,r(f, z) determined in Theorem 5.1.1, we see that Φ̃∆,r(f, z) is actually real
analytic on H \ {vertical geodesics in H−∆,r(f)}. Since the first two lines of the Fourier
expansion in Proposition 5.2.2 are also real analytic on this domain by the estimates
from Theorem 2.3.22 and agree with Φ̃∆,r(f, z) for y � 0, they have to agree with
Φ̃∆,r(f, z) on H \ {vertical geodesics in H−∆,r(f)}. This completes the proof.

5.3 The derivative of the Borcherds lift

We consider the derivative

Φ′∆,r(f, z) =
∂

∂z
Φ∆,r(f, z)

of the Borcherds lift.

Theorem 5.3.1. Let f ∈ H1/2,ρ̃∗L
. The derivative Φ′∆,r(f, z) of the Borcherds lift is

harmonic on H \ (H+
∆,r(f) ∪ H−∆,r(f)) and transforms like a modular form of weight 2

under Γ0(N). If ∆ 6= 1 or if c+
f (0, 0) = 0, then Φ′∆,r(f, z) is holomorphic on its domain.
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5.3 The derivative of the Borcherds lift

At a point z0 ∈ H+
∆,r(f) ∪H−∆,r(f) it has a singularity of type

i
√
N
∑

h∈L′/L

∑
n<0

c+
f (n, h)

∑
X∈L−|∆|n,rh

z0=zX

χ∆(X)
pX(z)

QX(z)

+ i
√
N |∆|

∑
h∈L′/L

∑
n>0

c−f (n, h)
∑

X∈L−|∆|n,rh
z0∈cX

χ∆(X)
sgn(pX(z))

QX(z)
.

Proof. The analytic properties of Φ′∆,r(f, z) follow from the Laplace equation in Theorem
5.1.1 and the formula

∆0 = −4y2 ∂

∂z̄

∂

∂z
.

The transformation behaviour follows from the fact that ∂
∂z

equals the raising operator
R0 up to a constant. The types of singularities of Φ′∆,r(f, z) are given by the derivatives
of the types of singularities of Φ∆,r(f, z), which can be computed using the formulas
(2.4.2).

Remark 5.3.2. Let X =

(
−b/2N −c/N

a b/2N

)
∈ L−|∆|n,rh. For n < 0 we have

QX(z) = aNz2 + bz + c = 0

exactly for the Heegner point z = zX . Hence Φ′∆,r(f, z) has simple poles at the Heegner
points in H+

∆,r(f). For n > 0 the sign of

pX(z) = −aN |z|
2 + bx+ c

y
√
N

changes if z crosses the geodesic cX . This means that Φ′∆,r(f, z) has jump singularities
along the geodesics in H−∆,r(f).
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5 Borcherds Lifts of Harmonic Maass Forms

Proposition 5.3.3. Let f ∈ H1/2,ρ̃∗L
. For y � 0 sufficiently large we have the Fourier

expansion

Φ′∆,r(f, z) = 4πi
√
|∆|ε̄

∞∑
n=1

∑
d|n

(
∆

n/d

)
d c+

f

(
|∆|d2/4N, rd

) e(nz)

+ 2
∞∑
m=1

c−f (|∆|m2/4N, rm)

(
|∆|
4N

)−1/2∑
b(∆)

(
∆

b

)
F ′(mz + b/∆)

+



− i
√
N

2
(f, θ1/2)reg +

i

y
c+
f (0, 0)

+
i

2

√
N c−f (0, 0)

(
log(4π)− log(Ny2)− 2 + Γ′(1)

) if ∆ = 1,

−i
√
N∆L(1, χ∆)c−f (0, 0) if ∆ > 1,

0 if ∆ < 0.

where ε = 1 if ∆ > 0 if ε = i for ∆ < 0, and

F ′(z) = − i
2

lim
s→0

(
y2sΓ(s+ 1)

∑
`∈Z

sgn(x+ `)(z̄ + `)

|z + `|2s+2
− Γ(s)

)
.

Proof. The derivative of F(z) can be computed most easily using the representation
(5.2.3) of arcsins as an incomplete beta function. Using the formula (5.2.5) for the
Gauss sum, the calculation of the remaining derivatives is straightforward.

Remark 5.3.4. We check the Laplace equation from Theorem 5.1.1 on the level of
Fourier expansions, at least for y � 0 sufficiently large. Using ∆0 = −4y2 ∂

z̄
∂
z
, and

applying −4y2 ∂
∂z̄

to the expansion of Φ′∆,r(f, z) from Proposition 5.3.3, we compute

∆0Φ∆,r(f, z) = −16y2

√
N√
|∆|

∞∑
m=1

mc−f (|∆|m2/4N, rm)
∑
b(∆)

(
∆

b

)(
∂

∂z̄
F ′
)

(mz + b/∆)

− δ∆=1

(
2c+
f (0, 0) + 2y

√
Nc−f (0, 0)

)
,

where
∂

∂z̄
F ′(z) =

1

2
lim
s→0

(
sy2s−1Γ(s+ 1)

∑
`∈Z

sgn(x+ `)(x+ `)

|z + `|2s+2

)
=

1

2y
.

Here the residue of the series over ` can be computed from its Fourier expansion by
similar arguments as in Lemma 5.2.1. If ∆ 6= 1, we obtain ∆0Φ∆,r(f, z) = 0 since the
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5.4 Modular integrals with rational period functions and Borcherds products

sum over the values of the nontrivial character
(

∆
·

)
vanishes, and if ∆ = 1 we get

∆0Φ1,r(f, z) = −2c+
f (0, 0)− 4y

√
N

(
1

2
c−f (0, 0) + 2

∞∑
m=1

mc−f (m2/4N, rm)

)
.

The expression in the brackets on the right-hand side vanishes since it is the complex
conjugate of the residue of the meromorphic 1-form

∑
h∈L′/L(ξ1/2f)rh(τ)·θh(τ) dτ . Hence

we obtain ∆0Φ1,r(f, z) = −2c+
f (0, 0), in accordance with Theorem 5.1.1.

Again, we consider the special case that c+
f (n, h) = 0 for all n < 0.

Corollary 5.3.5. Let f ∈ H1/2,ρ̃∗L
, and suppose that c+

f (n, h) = 0 for all n < 0 and
h ∈ L′/L. Then the Fourier expansion of the derivative Φ′∆,r(f, z) of the Borcherds lift
on H \H−∆,r(f) is given by the formula from Proposition 5.3.3 plus the expression

−2i
√
|∆|N

∑
h∈L′/L

∑
n>0

c−f (n, h)
∑

X∈L−|∆|n,rh
a6=0

χ∆(X)
1X(z) sgn(a)

QX(z)
,

where 1X(z) denotes the characteristic function of the bounded component of H \ cX .

Proof. This can either be proved by similar arguments as in the proof of Corollary 5.2.4,
or by computing the derivative of the expression (5.2.6), using the formulas (2.4.2).

5.4 Modular integrals with rational period functions and
Borcherds products

For simplicity, we assume in this section that N is square free. Then the cusps of Γ0(N)
can be represented by the fractions 1/c with c | N . Note that ∞ corresponds to 1/N .
The width of 1/c is given by α1/c = N/c. We choose the matrix σ1/c ∈ SL2(Z) sending
∞ to 1/c in the form

σ1/c =

(
1 β
c Nγ/c

)
where β, γ ∈ Z are such that Nγ/c − cβ = 1. Then we can take the Atkin-Lehner
involution corresponding to N/c as

WN/c = σ1/c

(
N/c 0

0 1

)
.

We see that WN/c∞ = 1/c, so the Atkin-Lehner involutions act transitively on the cusps.
Further, the expansion at the cusp 1/c of a function F , which is modular of weight k ∈ Z,
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5 Borcherds Lifts of Harmonic Maass Forms

is given by
(F |kσ1/c)(z) = (c/N)k/2 · (F |kWN/c)(cz/N).

Since
Φ∆,r(f, z)|0WN/c = Φ∆,r(f

wN/c , z)

and consequently
Φ′∆,r(f, z)|2WN/c = Φ′∆,r(f

wN/c , z),

the expansion of Φ′∆,r(f, z) at the cusp 1/c is essentially given by Φ′∆,r(f
wN/c , z).

5.4.1 Modular integrals with rational period functions

As an application of our extension of the Borcherds lift, we construct modular integrals
of weight 2 for Γ0(N) with rational period functions from harmonic Maass forms of
weight 1/2. Following Knopp [Kno74], we call a holomorphic function F : H → C a
modular integral of weight k ∈ Z for Γ0(N) with rational period functions if

qM(z) = F (z)− (F |kM)(z)

is a rational function of z for each M ∈ Γ0(N), and if F is holomorphic at the cusps
of Γ0(N), in the sense that limy→∞(F |kM)(z) exists for every M ∈ SL2(Z). Then the
map M 7→ qM defines a weight k cocycle for Γ0(N) with values in the rational functions
which are holomorphic on H, i.e., it satisfies

qMM ′ = qM |kM ′ + qM ′

for all M,M ′ ∈ Γ0(N). Conversely, it follows from a more general result of Knopp
[Kno74] that every such cocycle admits a holomorphic modular integral. Knopp’s mod-
ular integrals are Poincaré series built from the cocycles. It was shown in [DIT10] and
[DIT11] that certain generating series of (traces of) cycle integrals of weakly holomor-
phic modular functions for SL2(Z) are modular integrals of weight 2 with rational period
functions. Using the Borcherds lift we generalize their construction to higher level.

Proposition 5.4.1. Let ∆ 6= 1 be a fundamental discriminant. Let f ∈ H1/2,ρ̃∗L
with

c+
f (n, h) = 0 for all n < 0 and h ∈ L′/L. Further, assume that c−f (|∆|m2/4N, rm) = 0

for all m ∈ Z,m > 0. Then the function

F∆,r(f, z) = − 1

4π
L(1, χ∆)c−f (0, 0) +

ε̄√
N

∞∑
n=1

∑
d|n

(
∆

n/d

)
d c+

f

(
|∆|d2/4N, rd

) e(nz)
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5.4 Modular integrals with rational period functions and Borcherds products

is holomorphic on H and at the cusps of Γ0(N), and satisfies the transformation rule

F∆,r(f, z)|2M − F∆,r(f, z) = − 1

π

∑
h∈L′/L

∑
n>0

c−f (n, h)
∑

X∈L−|∆|n,rh
aMX<0<aX

χ∆(X)

QX(z)

for all M ∈ Γ0(N), where aX denotes the a entry of X. In particular, F∆,r(f, z) is a
modular integral of weight 2 for Γ0(N).

Remark 5.4.2. 1. The requirement c−f (|∆|m2/4N, rm) = 0 for all m ∈ Z,m > 0,
ensures that Φ′∆,r(f, z) does not have singularities along vertical geodesics, and
implies that the second line of the Fourier expansion in Proposition 5.3.3 vanishes.

2. The proof of the transformation behaviour works for arbitrary positive integers N ,
but the assumption that N is square free is used to obtain the Fourier expansions
of Φ′∆,r(f, z) at different cusps via Atkin-Lehner operators. One could compute
the expansion at a cusp ` by choosing an appropriate sublattice K` instead of K in
Proposition 5.2.2 and modify the computation of the expansion at ∞ correspond-
ingly. However, the above result is certainly true without the assumption that N
is square free, but the computations become much more technical.

Proof of Proposition 5.4.1. Let z ∈ H \H−∆,r(h), and let

F ∗∆,r(f, z) = − 1

2π

∑
h∈L′/L

∑
n>0

c−f (n, h)
∑

X∈L−|∆|n,rh
a6=0

χ∆(X)
1X(z) sgn(a)

QX(z)
.

By Corollary 5.3.5 we have

Φ′∆,r(f, z) = 4πi
√
N |∆|(F∆,r(f, z) + F ∗∆,r(f, z)).

Since Φ′∆,r(f, z) transforms like a modular form of weight 2 for Γ0(N), we obtain

F∆,r(f, z)|2M − F∆,r(f, z)| = −F ∗∆,r(f, z)|2M + F ∗∆,r(f, z).

Using QX(z)|−2M = QM−1X(z), we obtain that the right-hand side of the last formula
equals

− 1

2π

∑
h∈L′/L

∑
n>0

c−f (n, h)
∑

X∈L−|∆|n,rh
a6=0

χ∆(X)
1X(z) sgn(aX)− 1MX(Mz) sgn(aMX)

QX(z)
.

125



5 Borcherds Lifts of Harmonic Maass Forms

The characteristic functions 1X and 1MX are related by

1MX(Mz) =

{
1X(z), if aX · aMX > 0,

1− 1X(z), if aX · aMX < 0.

In particular, all summands with aX · aMX > 0 cancel out. In the remaining sum over
X with aX · aMX < 0, we replace X with −X if aX < 0, giving a factor 2. This
proves the transformation behaviour of F∆,r(f, z) for z ∈ H \ H−∆,r(f). Since all the
functions appearing in the transformation formula are holomorphic on H, we obtain the
transformation law by analytic continuation.

Using Φ′∆,r(f, z)|2Wd = Φ′∆,r(f
wd , z) we obtain

F∆,r(f, z)|2Wd = F∆,r(f
wd , z) + F ∗∆,r(f

wd , z) + F ∗∆,r(f, z)|Wd.

Since F∆,r(f
wd , z) is holomorphic at ∞, and F ∗∆,r(f

wd , z) and F ∗∆,r(f, z)|2Wd vanish as
y →∞, we see that F∆,r(f, z) is holomorphic at the cusps.

Example 5.4.3. Let ∆ > 1. We apply Proposition 5.4.1 to a harmonic Maass form
f ∈ H1/2,ρ∗L

arising as the image of the regularized theta lift studied by Bruinier, Funke
and Imamoglu in [BFI15] of a harmonic Maass form F ∈ H+

0 (Γ0(N)). We assume that
the constant coefficients a+

` (0) of F vanish at all cusps. By Theorem 4.1 in [BFI15] the
Fourier expansion of the h-th component of f is given by

fh(τ) = −2 trF (0, h)
√
v

+
∑
n<0

trF (−n, h)
√
vβ1/2(4π|n|v)e(nτ)

+
∑
n>0

√
N

π
trF (−n, h)e(nτ)

+
∑
n>0

trcF (−n2/4N, h)
√
vβc1/2(−4πn2v/4N)e(n2τ/4N),

where

trF (0, h) = −δ0,h
1

2π

∫ reg

Γ0(N)\H
F (z)

dx dy

y2

is a regularized average value of F and

trcF (n, h) =
∑

X∈Γ0(N)\Ln,h

∑
m<0

(
a+
`X

(m)e2πiRe(c(X))m + a+
`−X

(m)e2πiRe(c(−X))m
)

is a complementary trace, which differs by a sign from the complementary trace appear-
ing in the Fourier expansion of the weight k = 0 Millson lift in Theorem 3.3.1 since the
Millson and the Bruinier-Funke-Imamoglu lift transform with different representations.
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Our definition of the traces of cycle integrals equals π√
N

times the traces of cycle inte-

grals defined in [BFI15], and the traces for |m|/N being a square need to be regularized
as explained in [BFI15], Section 3. Note that the trace of index 0 can be evaluated
explicitly in terms of the principal parts of F at the cusps of Γ0(N), see [BF06], Remark
4.9, and that the complementary trace is nonzero only for finitely many n, see [BF06],
Proposition 4.7. Observe that c+

f (n, h) = 0 for n < 0 and c−f (∆m2/4N, rm) = 0 for
m ∈ Z,m > 0, if ∆ > 1.

By Proposition 5.4.1, for ∆ > 1 a fundamental discriminant the function

F∆,r(f, z) =
1

2π
L(1, χ∆) trF (0, 0) +

1

π

∞∑
n=1

∑
d|n

(
∆

n/d

)
d trF

(
∆d2/4N, rd

) e(nz)

is a holomorphic function on H, which transforms under the weight 2 slash operation of
M ∈ Γ0(N) by

F∆,r(f, z)|2M − F∆,r(f, z) = − 1

π

∑
h∈L′/L

∑
n>0

trcF (−n2/4N, h)
∑

X∈L−∆n2/4N,rh

aMX<0<aX

1

QX(z)
.

Since χ∆(X) = 1 for X ∈ L−∆n2/4N,rh we dropped it from the notation.

In the special case N = 1 and F = J = j−744 (with trJ(0, 0) = 4 and trcJ(−1/4, 1) =
2) we recover the result of Duke, Imamoglu and Tóth [DIT11] stated in the introduction.

5.4.2 Borcherds products

In this section we construct twisted Borcherds products of harmonic Maass forms f ∈
H1/2,ρ̃∗L

. Let us first recall the definition and some properties of twisted Borcherds
products of f ∈ H+

1/2,ρ̃∗L
. For simplicity we assume ∆ 6= 1.

Theorem 5.4.4 ([BO10b], Theorem 6.1). Let ∆ 6= 1 be a fundamental discriminant,
and let f ∈ H+

1/2,ρ̃∗L
be a harmonic Maass form with real coefficients c+

f (m,h) for all

m ∈ Q and h ∈ L′/L, and assume that c+
f (m,h) ∈ Z for m ≤ 0. Then the infinite

product

Ψ∆,r(f, z) =
∞∏
m=1

∏
b(∆)

[1− e(mz + b/∆)](
∆
b )c+f (|∆|m2/4N,rm)

converges for y � 0 sufficiently large and has a meromorphic continuation to all of H.
It is a meromorphic modular form of weight 0 for Γ0(N) and a unitary character, and
its roots and poles lie on the CM points in H+

∆,r(f), their order being determined by the
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5 Borcherds Lifts of Harmonic Maass Forms

coefficients c+
f (m,h) for m < 0. Further, it is related to the Borcherds lift of f by

Φ∆,r(f, z) = 2
√
|∆|c+

f (0, 0)L(1, χ∆)− 4 log |Ψ∆,r(f, z)|. (5.4.1)

In order to generalize the above Borcherds products to the full space H1/2,ρ̃∗L
we first

recall the construction of certain weight 0 and weight 2 cocycles from [DIT17], which
will appear in the transformation rule of the Borcherds product.

Lemma 5.4.5. Let n > 0 such that N |∆|n is not a square, and let A ∈ Γ0(N)\L−|∆|n,rh.
Then the function

qAM(z) =
∑
X∈A

aMX<0<aX

1

QX(z)

defines a weight 2 cocycle with values in the rational functions which are holomorphic
on H.

Proof. As in the proof of Proposition 5.4.1 we compute∑
X∈A

aMX<0<aX

1

QX(z)
=
∑
X∈A
a>0

1X(z) sgn(a)

QX(z)
−
∑
X∈A
a>0

1X(z) sgn(a)

QX(z)

∣∣∣∣
2

M

for z not lying on any geodesic cX with X ∈ A. This easily implies that the map
M 7→ qAM is a weight 2 cocycle.

Remark 5.4.6. We sketch a possible construction of a modular integral for qAM(z), which
is due to Parson [Par93]. Since we will not use it in this work, we skip the details. The
function

fA(z, s) =
∑
Q∈A

sgn(a)

QX(z)|QX(z)|s

converges for Re(s) > 0. By computing its Fourier expansion as in [Koh85], Proposi-
tion 2, we see that the limit fA(z) = lims→0 fA(z, s) exists, and has an expansion of the
form fA(z) = a0y

−1 +
∑

n≥1 a(n)qn with a(n) � nα for some α > 0. By subtracting a
suitable multiple of the weight 2 non-holomorphic Eisenstein series we obtain a modular
integral for qAM(z).

Next, we would like to construct a weight 0 cocycle RAM(z) with values in the holomor-
phic functions on H such that ∂

∂z
RAM(z) = qAM(z). The following Proposition gives such a

construction for general cocycles with values in rational functions which are holomorphic
on H.

Proposition 5.4.7 ([DIT17], Theorem 2.1). Let F (z) =
∑

n≥0 a(n)e(nz) be a holo-
morphic modular integral of weight 2 for Γ0(N) with rational period functions qM =
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F |2M −F . Assume that a(n)� nα for some α > 0. For M = ( a bc d ) ∈ Γ0(N) with c 6= 0
we let

Λ
(
s,
a

c

)
=

(
2π

c

)−s
Γ(s)

∑
n≥1

a(n)e
(an
c

)
n−s

and

H
(
s,
a

c

)
= Λ

(
s,
a

c

)
+

∫ ∞
1

qM(−d/c+ it/c)t1−sdt+
a(0)

s
− a(0)

2− s
.

Then H
(
s, a

c

)
is entire and satisfies the functional equation H

(
s, a

c

)
= −H

(
2− s,−d

c

)
.

Further, for c 6= 0 we set

RM(z) = − i
c
H
(

1,
a

c

)
+

∫ z

− d
c

+ i
c

qM(w)dw + a(0)
a+ d

c
,

and for M = ± ( 1 n
0 1 ) we let RM(z) = na(0). Then RM(z) defines a weight 0 cocycle for

Γ0(N) with values in the holomorphic functions on H, and which satisfies ∂
∂z
RM(z) =

qM(z) for every M ∈ Γ0(N).

Proof. The proof is exactly the same as that of [DIT17], Theorem 2.1, so we only give
a sketch. By a standard computation we obtain for c 6= 0 the integral representation

H
(
s,
a

c

)
= −

∫ ∞
1

(F (z1/t)− a(0))t1−sdt+

∫ ∞
1

(F (Mzt)− a(0))ts−1dt,

where zt = −d
c

+ i
ct

. Since z1/t = −d
c

+ it
c

and Mzt = a
c

+ it
c
, we see that H

(
s, a

c

)
is entire

and satisfies the claimed functional equation. Further, we let

G(z) = a(0)z +
∑
n≥1

a(n)

2πin
e(nz)

be a primitive of F (z). By taking the limit s → 1 in H
(
s, a

c

)
we obtain after a short

calculation
RM(z) = G(Mz)−G(z),

which is valid for all M ∈ Γ0(N) and defines a weight 0 cocycle with values in the
holomorphic functions on H, and ∂

∂z
RM(z) = qM(z).

Lemma 5.4.8. Let qAM be the weight 2 cocycle associated to A ∈ Γ0(N) \ L−|∆|n,rh as
above. For X ∈ A let wX > w′X denote the two real endpoints of the geodesic cX . Let
F (z) =

∑
n≥0 a(n)qn be a modular integral for qAM with a(n) � nα for some α > 0 and
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let M = ( a bc d ) ∈ Γ0(N). Further, for c 6= 0 let

LF

(
s,
a

c

)
=
∑
n≥1

a(n)e
(an
c

)
n−s.

and

RAM(z) =
1√

4N |∆|n

∑
X∈A

aMX<0<aX

(log(z − wX)− log(z − w′X))+
1

2πi
LF

(
1,
a

c

)
+a(0)

a+ d

c
,

and for M = ± ( 1 n
0 1 ) we let RAM(z) = na(0). Then RAM(z) is a weight 0 cocycle with

values in the holomorphic functions on H which satisfies ∂
∂z
RAM(z) = qAM(z).

Proof. Note that

qAM(z) =
1√

4N |∆|n

∑
X∈A

aMX<0<aX

(
1

z − wX
− 1

z − w′X

)
.

Thus if we choose

1√
4N |∆|n

∑
X∈A

aMX<0<aX

(log(z − wX)− log(z − w′X))

as a primitive for qAM(z), the formula for RAM(z) follows from Proposition 5.4.7.

Example 5.4.9. Let N = 1,∆ > 1, and M = S = ( 0 −1
1 0 ). We have

qAS (z) =
∑
X∈A
c<0<a

1

QX(z)
.

It easily follows from the definition and the functional equation of H(s, 0) given in
Proposition 5.4.7 that

LF (1, 0) = − 2πi√
4∆n

∑
X∈A
c<0<a

(log(i− wX)− log(i− w′X))

independently of the modular integral F for qA. In particular, we obtain

RAS (z) =
1√

4∆n

∑
X∈A
c<0<a

(
log

(
z − wX
i− wX

)
− log

(
z − w′X
i− w′X

))
.
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5.4 Modular integrals with rational period functions and Borcherds products

We can now state the transformation behaviour of the Borcherds product associated
to f ∈ H1/2,ρ̃∗L

.

Theorem 5.4.10. Let ∆ 6= 1 be a fundamental discriminant. Let f ∈ H1/2,ρ̃∗L
and

suppose that c+
f (|∆|m2/4N, rm) ∈ R for all m ∈ Z,m > 0. Further, assume that

c+
f (n, h) = 0 for all n < 0, h ∈ L′/L, and that c−f (|∆|m2/4N, rm) = 0 for all m ∈
Z,m > 0. Then the infinite product

Ψ∆,r(f, z) =
∞∏
m=1

∏
b(∆)

[1− e(mz + b/∆)](
∆
b )c+f (|∆|m2/4N,rm) (5.4.2)

× e

(√
|∆|N
4π

L(1, χ∆)c−f (0, 0)z

)
(5.4.3)

converges to a holomorphic function on H transforming as

Ψ∆,r(f,Mz) = χ(M)µ∆,r(f,M, z)Ψ∆,r(f, z) (5.4.4)

for all M ∈ Γ0(N), where χ is a character of Γ0(N) and

µ∆,r(f,M, z) =
∏

h∈L′/L

∏
n>0

∏
A∈Γ0(N)\L−|∆|n,rh

e

(
−
√
|∆|N
π

c−f (n, h)χ∆(A)RAM(z)

)
,

where RAM(z) is the weight 0 cocycle with ∂
∂z
RAM(z) = qAM(z). Further, its logarithmic

derivative is given by

∂

∂z
log (Ψ∆,r(f, z)) = −2πi

√
|∆|NF∆,r(f, z),

where F∆,r(f, z) is the modular integral defined in Proposition 5.4.1.

Proof. Using Proposition 5.4.1 we see after a short calculation that the logarithmic
derivatives of Ψ∆,r(f,Mz) and µ∆,r(f,M, z)Ψ∆,r(f, z) agree. Further, both functions
are holomorphic and non-vanishing on H. Hence they are constant multiples of each
other. This proves the transformation behaviour.

The fact that RAM(z) is a weight 0 cocycle together with the transformation formula
of the Borcherds product implies that χ is a character of Γ0(N).

Remark 5.4.11. Note that the function

F̃∆,r(f, z) = − 1

4π
L(1, χ∆)c−f (0, 0)z

− 1

2πi
√
|∆|N

∑
b(∆)

(
∆

b

) ∞∑
m=1

c+
f (|∆|m2/4N, rm) log[1− e(mz + b/∆)]
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is holomorphic on H and satisfies ∂
∂z
F̃∆,r(f, z) = F∆,r(f, z). Further, we have

Ψ∆,r(f, z) = e
(
−
√
|∆|NF̃∆,r(f, z)

)
.

In view of these relations and Proposition 5.4.1 the above theorem is not surprising.
However, we chose the formulation of the theorem to emphasize the analogy with the
Borcherds products of harmonic Maass forms which map to cusp forms under ξ1/2.

Example 5.4.12. Let ∆ > 1, and let f ∈ H1/2,ρ∗L
be the Bruinier-Funke-Imamoglu lift

of a harmonic Maass form F ∈ H+
0 (Γ0(N)) with vanishing constant coefficients a+

` (0) at
all cusps as in Example 5.4.3. Its Borcherds lift is given by

Ψ∆,r

(
π√
N
f, z

)
=

∞∏
m=1

∏
b(∆)

[1− e(mz + b/∆)](
∆
b ) trF (|∆|m2/4N,rm)

× e

(
−
√

∆

2
L(1, χ∆) trF (0, 0)z

)
.

For N = 1 and F = J = j− 744 (with trJ(0, 0) = 4 and trcJ(−1/4, 1) = 2) we obtain the
theorem in the introduction. Note that the relations S4 = 1, (ST )6 = 1 and χ(T ) = 1
imply that χ = 1 for N = 1.
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6 Outlook

The methods used in this work are applicable in many other situations. We describe
some future projects which are related to the present work, and mention some open
problems arising from this work.

Shintani theta lifts of harmonic Maass forms

As pointed out in Section 3.5, the Millson and the Shintani lift can be extended to the
full spaces of harmonic Maass form H−2k(Γ) and H2k+2(Γ), respectively. The coefficients
of the holomorphic part of the Shintani lift are given by regularized cycle integrals of
harmonic Maass forms, which can also be understood as special values of regularized
L-functions. As an application, one can construct ξ3/2-preimages of Zagier’s generating
series of singular moduli fd of weight 1/2 (see [Zag02]) as the Shintani lift of a ξ2-preimage
J̃ ∈ H2(SL2(Z)) of J , and use them to relate the regularized Petersson norm (fd, fd)

reg

of fd (see [BDE16]) to the central value of the d-th twist of the regularized L-function
of J̃ . This will be the topic of upcoming joint work with Claudia Alfes-Neumann.

Regularized Kudla-Millson lifts in genus 2

Let V be a rational quadratic space of signature (p, q) and let 1 ≤ n ≤ p. In [KM86,
KM90], Kudla and Millson constructed a special Schwarz function ϕ on V n with values in
the closed differential forms of degree nq on the symmetric space associated with O(p, q),
and they used the corresponding theta functions and lifts to prove that the generating
series of period integrals of compactly supported differential forms along certain special
cycles are Siegel cusp forms of weight (p + q)/2 of genus n. In [BF06], Bruinier and
Funke extended this lift in signature (1, 2) and genus 1 to the space H+

0 (Γ) of harmonic
weak Maass forms, thereby proving the weight 3/2 modularity of generating series of
traces of CM values of weight 0 harmonic Maass forms. In this case, the Kudla-Millson
theta function is given by ΘKM(τ, z)dµ(z). In signature (2, 1), we can choose n = 1
or n = 2. For n = 1, the Kudla-Millson theta function is given by ΘSh,0(τ, z)dz +

ΘSh,0(τ, z)dz̄, i.e., it gives rise to the Shintani theta lift, and for n = 2, the Kudla-
Millson Schwartz form gives rise to a theta lift from weight 0 harmonic Maass forms to
weight 3/2 (non-holomorphic) Siegel modular forms of genus 2. The investigation of the
latter lift is a joint project with Michalis Neururer. First computations have shown that
the theta lift converges without regularization due to the very rapid decay of the theta
function. Further, we expect the coefficients a(Q) of the lift corresponding to positive
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definite quadratic forms Q to be related to values of the input function at the CM point
corresponding to Q, rather than to traces of CM values of the input, which appear in
the genus 1 case.

Borcherds lifts of harmonic Maass forms in signature (n, 2)

In the present work, we investigated the Borcherds lift in signature (1, 2) (by identifying
the Grassmannian with the upper half-plane, and modular forms for the orthogonal
group with elliptic modular forms), and showed that it maps harmonic Maass forms
of weight 1/2 to real analytic modular functions with singularities at CM points and
geodesics in H. Let L be an even lattice in a rational quadratic space V of signature
(n, 2), let Γ be a congruence subgroup of O(L) which fixes the classes of L′/L, and let
D be the Grassmannian of negative definite planes in V (R). In [Bor98] and [Bru02] the
authors considered the Borcherds lift on weight 1 − n/2 weakly holomorphic modular
forms and harmonic Maass forms in H+

1−n/2,ρL , and showed that it yields real analytic
Γ-invariant functions on D with singularities at Heegner divisors, which can be thought
of as embedded sub-Grasmmanians associated to O(n − 1, 2). Using the methods of
this work we can also extend the Borcherds lift in signature (n, 2) to a map from the
full space H1−n/2,ρL to real analytic modular functions on D with singularities along
embedded sub-Grassmannians associated to O(n− 1, 2) and O(n, 1). We hope to come
back to this problem in the near future.

Open Problems

Problem 1

The proof of the growth estimates for the holomorphic coefficients of a harmonic Maass
form of weight 1/2 whose holomorphic principal part vanishes (see Theorem 2.3.22) is
extremely complicated, especially if we compare it to the simple proof (Hecke bound
applied to ξ1/2f) of the estimate for the non-holomorphic coefficients of a harmonic
Maass form f ∈ H+

1/2,ρL
. For the applications in this work, any polynomial bound would

be sufficient, and there should be a simpler proof of such a polynomial estimate.

Problem 2

It would be desirable to give a more explicit construction of the modular function F
from Lemma 4.2.2. Since there is a lot of freedom in the requirements on F , e.g., the
principal part at ∞ may have poles of arbitrary order, the author believes that there
should be simple trick to find such a function F explicitly. This would be useful for
the numerical computation of Petersson inner products of harmonic Maass forms with
unary theta functions.
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Problem 3

Numerical experiments suggest that the traces in Theorem 4.2.6 are integers already
without the factors 6 and 6t. Yingkun Li informed the author that he found a different
construction of ξ-preimages of unary theta series which have holomorphic parts whose
Fourier coefficients are rational numbers with bounded denominators. This also suggests
that the factor t is not necessary.

Problem 4

The applications of the Millson theta lift presented in this work only use the lift for
k = 0, i.e., the lift from weight 0 to weight 1/2 harmonic Maass forms. It would be
interesting to find applications of the higher weight Millson lift of F ∈ H+

−2k(Γ), apart
from proving the modularity of generating series of traces of CM values of Rk

−2kF and
traces of cycle integrals of ξ−2kF .

Problem 5

In Lemma 2.3.17 we gave a basis of the space M1/2,ρ∗L
for the lattice L = (Z,−Nx2),

consisting of unary theta series, and thus resembling the Serre-Stark theorem. In Sec-
tion 2.4.2 we defined unary theta series Θ`,0(τ) of weight 1/2 corresponding to one-
dimensional sublattices K` of an even lattice L of signature (1, 2), where ` is an isotropic
vector of L⊗Q. Thus the question arises whether these theta series form a basis (or at
least a generating system) for M1/2,ρ∗L

. This problem could be adressed using an explicit
description of M1/2,ρ∗L

in terms of invariants of the Weil representation given in [Sko08].
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einfachen Gittern von Primzahlstufe“

seit April 2013 wissenschaftlicher Mitarbeiter
am Fachbereich Mathematik
der Technischen Universität Darmstadt

20. Oktober 2017 Einreichung der Dissertation
an der Technischen Universität Darmstadt

8. Januar 2018 Tag der mündlichen Prüfung
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